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Figure 1: Soundr allows smart speakers to know the user’s location and in which direction they are talking. (a) User looks at a 
connected lamp and tells it to turn on. (b) Our CNN-LSTM model, trained with 700+ min of data, processes the multi-channel 
audio from the microphone array. (c) Soundr outputs the predicted head position and orientation and turns on the intended light. 

ABSTRACT 
Although state-of-the-art smart speakers can hear a user’s 
speech, unlike a human assistant these devices cannot figure 
out users’ verbal references based on their head location and 
orientation. Soundr presents a novel interaction technique 
that leverages the built-in microphone array found in most 
smart speakers to infer the user’s spatial location and head 
orientation using only their voice. With that extra information, 
Soundr can figure out users references to objects, people, and 
locations based on the speakers’ gaze, and also provide relative 
directions. 

To provide training data for our neural network, we collected 
751 minutes of data (50x that of the best prior work) from 
human speakers leveraging a virtual reality headset to accu-
rately provide head tracking ground truth. Our results achieve 
an average positional error of 0.31m and an orientation angle 
accuracy of 34.3° for each voice command. A user study to 
evaluate user preferences for controlling IoT appliances by 
talking at them found this new approach to be fast and easy to 
use. 
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INTRODUCTION 
Voice-based virtual assistants have recently seen wide adop-
tion. According to a report from Voicebot.ai and Voicify [3], 
26.2 percent of adults in the U.S. own a smart speaker. How-
ever, current-generation smart speakers only recognize the 
content of the user’s speech, while a human can also identify 
where the user is and who or what they are addressing. Future 
smart speakers should learn this as well to let users express 
their intentions more easily; from the user’s location and gaze, 
the assistant can infer the user’s references to objects, people, 
and locations, and also provide relative directions. 

Notably, humans can distinguish the position and orientation 
of other speakers with only an auditory signal [18]. This 
inspired us to use the multi-channel microphone that is already 
present in most smart speakers to obtain this information. The 
multi-channel microphone is traditionally used to increase 
the sensitivity of the microphone in any specified direction, 
thus recognizing speech from afar. We can leverage the extra 
information embedded in the raw audio streams collected 
from the microphone, namely the phase differences between 
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the sound waves received by different microphones and sound 
reflection patterns, to know where the user is talking from and 
in which direction the user is talking towards. 

Prior work has also investigated using multi-channel audio to 
predict the user’s position and orientation. Traditional research 
[5, 7, 8, 19, 25] in this area uses signal processing approaches 
that are prone to noise, preventing them from mass adoption. 
Recent advances in this area involve using machine learning to 
directly process the audio input [26, 27, 31], but the results are 
disappointing since they suffer from a lack of training data. 

To build a user position and head orientation prediction sys-
tem that works in real life, we leverage virtual reality (VR) 
technology to collect data. Since commercial VR technology 
can track a user’s head position and orientation accurately 
while blocking little to none of the user’s voice, Soundr uses 
a VR headset to collect ground-truth tracking data. We col-
lected more than 750 minutes of training data, which is 50 
times larger than that obtained by the best prior work [13]. 
We proceeded to design a machine learning model that uses 
a convolutional neural network (CNN) with long-short-term-
memory (LSTM) [9] architecture to produce accurate position 
and orientation results at low latency. Based on our evalua-
tion, our model can reach 0.31m average error on position and 
34.3°average error on orientation if given training data from 
the same room and the same user. 

With that extra information, Soundr can figure out a user’s 
references based on their gaze. One important application for 
this is to control Internet of Things (IoT) appliances within 
a room. With Soundr, users can simply look at and talk to 
the appliances that they want to control without having to 
name each of them individually, e.g., “Turn on the light” to 
turn on the light in front of the user. They can also express 
their intentions directly and the system will be able to fulfill 
their request based on where they are, e.g., “Make this area 
brighter” to turn up the lights for the local area. We evaluated 
users’ preference for such a system by comparing it with two 
baseline conditions: controlling a device by its name and using 
a phone-based augmented reality (AR) app. The results show 
that users can complete the same control tasks faster with 
Soundr than with both other conditions. 

The contributions of this project1 include: 

1. A novel interaction technique that uses a microphone ar-
ray2 for head tracking so smart speakers can understand 
references to objects, people, and locations based on the 
speakers’ gaze, and also provide relative directions. 

2. The first algorithm that detects head orientation of a human 
speaker with a single microphone array, achieving an aver-
age orientation error of 40°, and a positional error of 0.33m 
for different users in the same room. 

3. An evaluation that shows users using our Soundr system can 
control IoT devices faster than using AR or conventional 
speech methods. 

1Source code and dataset: https://jya.ng/soundr 
2We used a miniDSP UMA-16 microphone array for both data col-
lection and the user study. 

RELATED WORK 
There are three categories of related work for Soundr: multi-
modal interactions involving voice, acoustic source localiza-
tion, and head orientation tracking from audio. 

Multi-modal interaction with head tracking 
Soundr allows users to use their voice and head orientation to 
control IoT devices. Prior work has also described other kinds 
of interactions that involve head orientation, along with other 
modalities. 

Malkewitz [14] presents one of the earliest works in this area, 
which demonstrates the possibility of using head orientation 
and speech input to control a graphical user interface. Ronzhin 
and Karpov expand on this technology for accessibility pur-
poses [21]. Ito applies the same concept to control multiple 
home appliances [10]. This research requires the user to wear 
a specially made headset to achieve head tracking and audio 
capture. Jeet et al. also propose a similar system for accessi-
bility purposes [11]. To solve the problem of head tracking 
without requiring the user to wear a headset, Segura et al. [24] 
propose using a network of microphones and multiple video 
cameras and fusing their result to achieve this task. 

In general, although prior work proposed a similar application, 
due to the limitations of their technology, these systems cannot 
be implemented in a smart speaker. Soundr, on the other 
hand, only relies on audio data collected from a small-sized 
microphone array, and can thus implement the aforementioned 
applications entirely on a smart speaker. 

Acoustic source localization 
Traditionally, predicting the position of a sound source is a sig-
nal processing problem [31]. There are three approaches [5,8]: 
time-delay-based, beamforming-based, and high-resolution-
spectral-estimation-based methods. Time-delay-based meth-
ods compute the delay between received signals and compute 
the position of the sound source based on the position of the 
microphones and time delay [5,25]. Beamforming-based meth-
ods add the streams of audio signals received from multiple 
microphones with a certain delay (steering) to form an audio 
signal that amplifies the sound signal transmitted from a spe-
cific position in space. By computing the power of the signal 
when the microphone is steered at different places (Steered 
Response Power), we can find the actual position of the sound 
source [8, 19]. Spectral-estimation-based methods first esti-
mate the wavelength of the signal by doing spectral analysis. 
Then they filter the raw audio with that wavelength to produce 
a series of narrowband signals. Finally, they estimate the po-
sition of the sound source by finding the time delay on that 
narrowband [22]. These traditional methods usually need the 
microphone array to have a size comparable to the distances of 
potential sound sources, e.g., to estimate the speaker’s position 
in a 3.4m x 5m room, they need a 2.1m microphone array [7]. 
A microphone of this size is hard to fit in a smart speaker, 
which typically measures less than 20cm. 

Recently, there is also related work on using machine learn-
ing methods on the audio data to leverage the sophisticated 
capabilities of deep neural networks to improve single speaker 

https://jya.ng/soundr


 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 300 Page 3

position prediction [26,27,31]. However, machine learning re-
quires a large dataset, which is not easy to acquire for speaker 
positioning. Prior work relies on human annotation of recorded 
video data, which limits the size of the dataset and the accu-
racy of the groundtruth. This limits the accuracy of the related 
work, especially when tested with human subjects [31]. 

The largest dataset used with real human speaker data is the 
IDIAP AV16.3 dataset [13], which has only 15 minutes of data. 
These types of datasets tend to be composed of multi-channel 
audio and video recordings that use human annotators to add 
labels on the position of the user. This method is prone to 
human error and costly to generate a large amount of data. 
Other previous work uses a loudspeaker to simulate human 
voices and positions the loudspeakers using either human labor 
or robots at different positions/orientations of the room. While 
less labor-intensive, the number of positions and orientations is 
usually limited and the sound characteristics of a loudspeaker 
are different than the actual human voice. 

In general, traditional methods for position and orientation 
from audio data are less successful in terms of accuracy while 
more recent work using neural networks suffer greatly from 
a lack of data. In comparison, Soundr uses its unique data 
collection system to collect a much larger and more accurate 
dataset for training. This enables us to build complex models 
with better performance than prior work. 

Head orientation from multi-channel audio 
Soundr not only predicts the user’s position from the captured 
audio, but also the user’s head orientation. Head orientation 
prediction is a hard problem [17]. Most related work in this 
area uses several microphone arrays distributed around the 
room to predict the direction of the speaker [4, 6, 16, 17]. Ry-
oichi et al. present an algorithm based on Hidden Markov 
Models to predict speaker orientation using single-channel 
audio [28], but the result is not competitive with those that use 
multiple microphone arrays. Some prior work leverages exist-
ing algorithms for position prediction, such as Cross-power 
Spectrum Phase, and extracts many coefficients derived from 
the algorithm as a feature vector for machine learning [29]. 
However, these attempts suffer greatly from noise (achieving 
only 47.5% accuracy when the signal to noise ratio (SNR) is 
20 dB) and their training data is collected from a loudspeaker 
instead of a human speaker. “Are you talking to me” uses a 
smaller microphone array, but only distinguishes whether the 
user is talking in the direction of the microphone, which makes 
it less usable in our example applications [15]. In comparison, 
Soundr has a large dataset with real human users recorded 
from multiple different noisy rooms. With the help of machine 
learning, Soundr works well, even with noise. 

SYSTEM DESIGN 
We present the system design of Soundr in this section with 
an overview of how the Soundr system works, our design 
rationale, the details of our data collection system, and the 
machine learning system. 

Architectural overview 
Soundr provides the voice-based virtual assistant with a new 
interaction modality: head position and gaze direction without 

any additional hardware. This new modality plays an impor-
tant role in human conversations, but it is not supported in 
current electronic appliances. 

There are three possible ways to infer a user’s head position 
and direction: 1) collect this information from a device that is 
on the user’s body, 2) infer it from image data from a camera, 
and 3) calculate it using sound collected from a microphone 
array. The first two approaches both have their practical and 
social limitations and the third one appears ideal since it col-
lects no additional personal private information, makes the 
least assumptions of the user, and requires no modification to 
the smart speaker hardware. 

However, the current state-of-the-art techniques are inaccu-
rate and not robust. As discussed above, traditional signal 
processing methods are prone to noise; neural-network-based 
approaches have great potential, but still cannot reach the level 
of performance necessary for real applications. 

We identify three areas of improvement for neural network-
based approaches and present the corresponding solutions. 

(1) Need for more data. We need a wider and deeper model 
to produce accurate prediction results, and a wider and deeper 
model needs more data to train on. We developed a data 
collection system to automatically collect audio recordings 
with position and direction labels by leveraging virtual reality 
(VR) tracking systems. This method allows us to substantially 
scale up the collection of training data. This system provided 
us with 50x the amount of data of prior work. 

(2) Ability to leverage information in long audio clips while 
maintaining a low latency. Prior work shows models with 
longer audio clips as input can produce better results, but those 
models also create longer latency from input to output, which 
is not ideal for interactive applications. Also, models that can 
process longer audio are more complex, and therefore harder 
to train. To process longer audio clips while maintaining low 
latency and model simplicity we couple a convolution neural 
network with a LSTM network with one hidden layer. 

(3) Processing based on voice commands. Prior work predicts 
the head orientation and position using a short audio segment 
(~0.1 seconds). However, for our applications, we only need 
one result for each voice command (2 to 3 seconds). Just 
averaging the predicted head positions and orientations over all 
audio segments is not ideal since not every segment in a voice 
command results in the same accuracy. Some audio segments 
may have more distinctive sounds and thus give better results 
and other segments may not contain the user’s voice. To 
better process audio associated with a voice command, Soundr 
uses a machine learning model that produces the position and 
orientation of the user and a confidence value that is used to 
compute a weighted average over positions and orientations 
produced from all the audio segments in a voice command. 
This allows the model to give a higher confidence value when 
an audio segment is more distinctive for predicting position 
and orientation. By computing this weighted average, Soundr 
can get higher accuracy than computing a simple unweighted 
average of the result of all audio segments in a voice command. 
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Figure 2: Data collection VR user interface 
Left: User cone (white) is not aligned with target cone (red). 
User will move towards the target cone. Right: User cone 
(white) is aligned with target cone (cyan). User will be 
prompted to read the command "Unlock the door". 

To sum up, Soundr collects training data that contains audio 
data from a multi-channel microphone array, user positioning 
data (position and orientation) from the VR headset tracking 
data, and voice activity detection (VAD) data by running state-
of-the-art VAD algorithms [1] using the audio collected on 
the VR headset. We use these data sources to train a machine 
learning model that gets multi-channel audio data as input and 
outputs position, orientation, and confidence level. 

When the end-user is using the smart speaker for our test 
applications, we collect the multi-channel audio data from the 
smart speaker, and then run it through our algorithm to get the 
position, orientation, and confidence. Similar to most smart 
speakers, we also pass the audio data to a voice recognition 
algorithm to get the content of the user’s speech. We then 
map the position, orientation, and confidence data from our 
model to the time range of our voice recognition result and 
compute the weighted average according to the confidence 
as the position and orientation of the command. Finally, the 
content of the user’s speech and the average position and 
orientation from Soundr’s machine learning model can be 
passed to the applications to satisfy the user’s needs. 

Data collection system 
Soundr uses a unique data collection system that collects real 
human voice data from users wearing a VR headset to provide 
position and orientation ground truth and guide the user to 
talk in different positions and at different directions. In this 
way, we can collect human speaking data along with accurate 
annotations without intensive and error prone labor. This 
collection system collects three streams of data: multi-channel 
audio data from the microphone array, tracking data, and 
single-channel audio from the user’s headset microphone. 

The goal of the data collection system is to collect as much 
audio data as possible while making sure that the dataset has 
as little bias as possible. Simply asking the user to randomly 
walk while talking is not ideal since it is likely to create an 
unevenly distributed dataset and the model trained with it will 
be biased towards this walking pattern and not being able to 
generalize across different scenarios. 
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Arrayx
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Figure 3: Coordinate system used in data collector: 
The ground is the x-z plane. The microphone is placed on a 
wall, designated as the x− y plane. The microphone is always 
positioned as (0,1.5, 0), and therefore 1.5 meters off ground. 
The user’s head position can be defined as (xu,yu,zu). The 
user’s orientation can be defined as pitch θ and yaw ψ . 

To avoid those biases, Soundr’s data collection workflow has 
three steps: 1) We generate an evenly distributed set of combi-
nations of positions and orientations before the data collection, 
2) We ask the user to wear a VR headset and follow the instruc-
tion shown in the VR headset (see Figure 2). The instructions 
guide the user towards those generated combinations. 3) We 
collect data from both the headset and a microphone array, 
align the data streams together, and process them to produce 
the three streams of data for training. 

We generate the position and orientation using systemic sam-
pling. We first divide the space we use for data collection into 
36 blocks (6 columns in width and 6 rows in depth) and yaw 
of head rotation into 4 brackets (0-90°, 90-180°, 180-270°, 
and 270-360°). For each space block, we randomly generate 
four points within that block as the target position of the user. 
Each point is then randomly matched with one yaw rotation 
bracket and we randomly choose a yaw in that bracket and 
a pitch between −60° to 60°. Note that we always ask the 
user to keep a neutral position in roll since we don’t think the 
model would be able to distinguish different rolls just from 
the sound. 

To minimize the user’s time in walking and maximize the 
user’s time in producing usable speech data, we need to con-
nect those generated positions and orientations into a path. We 
do not want the path to always start from a specific position 
and end at another position, since the user will get fatigued 
during the process and we do not want the model to learn that 
as a factor for position prediction. Therefore, we divide those 
combinations into four laps around the room. In each lap, we 
always start from one corner and move down a column with 
incremental depth, then we go through all the other columns 
similarly. 

Our VR application guides the user to move towards the gener-
ated positions and orientations in the four laps. The interface 
of our VR program is shown in Figure 2. The application 
shows three triangles in front of the user’s viewport in the 
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Dataset name 
Number of participants 

(number of coauthors included) 
Duration 
(minutes) 

Environment Description 

Office 9(3) 397 Office space (with constant server noise and other people talking) 

Living room 6(0) 228 Shared kitchen / living room space (with regular kitchen noise 
and occasional people talking in the background) 

Conference room 1 3(0) 64 Conference room (with noise of door opening and closing) 
Bedroom 2(1) 41 Bedroom (with regular noise of floor creaking while walking) 
Conference room 2 1(1) 24 Another conference room 

Table 1: Data collected for developing the machine learning model. 

shape of a cone (user cone). It will also show a similar cone 
(target cone) at the target. The cone starts out red, indicating 
that the user’s position and rotation are not yet aligned (Figure 
2 left). We instruct the user to align their user cone with the 
target cone. As the user gets to the target cone, the target cone 
will turn cyan, indicating that the user has reached the destina-
tion. Then a command shows up inside the target cone (Figure 
2 right). Each time, one command is selected from our pool of 
136 typical voice assistant commands3. We instruct the user 
to read the command at a natural speed and in a natural voice. 
They then press a button on the VR controller to display the 
next command. Four commands are displayed at each position 
(so that the user spends more time speaking instead of moving) 
and then the system shows the target cone at the next position 
and orientation. 

We collect tracking data from the VR headset in the coordinate 
system shown in Figure 3. Note that for rotation, we collect 
rotation quaternions since they are more accurate for data 
processing. We refer to rotations using Euler angles in this 
paper for ease of understanding. We process the data collected 
to generate the three data streams we need for training. For the 
single-channel audio data collected from the VR headset, we 
divide it into 0.1 sec segments and pass it into a state-of-the-art 
model (WebRTC VAD [1]) for voice activity detection and 
produce a single classification tag of whether there is voice 
activity during that time. For head tracking data, we remove 
the roll collected by the headset and set it to 0°. We keep the 
multi-channel audio data unchanged. We then align these three 
data streams together to compensate for network latency and 
droped frames from the VR headset and use this to generate 
three data streams for training. 

Data collection procedure 
To collect training data for Soundr we need to ensure that we 
have a diverse set of people with different heights and genders 
so that the system will not be biased towards a specific group 
of people. As such, we recruited external participants to help 
us collect training data. 

Tasks 
At the beginning of each collection session, we asked partic-
ipants to fill in a demographic questionnaire (gender, age), 
and we measured their height. Then we asked them to wear 
a VR headset and follow the instructions in the headset. As 
described earlier, our data collection program guides the user 
3A list of our example commands can be found in the Auxiliary 
Materials. 
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Figure 4: Collected tracking data is evenly distributed. 

towards different positions and head orientations through four 
“laps” composed of 144 total different positions and 576 total 
spoken commands. We asked our participants to finish two 
laps first, followed by an optional rest period. After resting, 
they returned and finished the remaining two laps of the study. 
The study took about 30 minutes to complete. 

We performed data collection in five different rooms. In each 
room, we set up a space of 3.5m (depth) x 3.5m (width), 
including 0.5m clearance on both depth and width for safety. 
The data collection system generated evenly distributed targets 
to guide the user to walk in a 3m x 3m space. 

Participants 
We recruited 16 participants (9 female), aged 19 to 29 (median 
22). The participants’ height ranged from 150cm to 189cm 
with a median of 170cm. Each participant was compensated 
with a $15 gift card for participation. 

Results 
The data we collected are shown in Table 1. The five rooms 
we collected data in included an office, a shared kitchen/living 
room, a bedroom, and two different conference rooms. Note 
that for the living room and office dataset, there were other 
people talking in the space at the same time. The living room 
dataset also had kitchen appliance noises. Apart from the 
data we collected from our participants, our co-authors also 
contributed part of the data (as listed in the table). Each of our 
participants contributed data only in a single room. 

The distribution of the tracking data is shown in Figure 4. 
As expected from our data collection system, the position 
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data we collected is evenly distributed across the x and z axis, 
representing the width and depth of the room. (Data across 
y axis are not evenly distributed since they correspond to 
the participants’ height.) The orientation data is also evenly 
distributed across different yaw, and for pitch it is evenly 
distributed within (−60◦ ,60◦). 
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Figure 5: Machine learning architecture of Soundr. LSTM: long short-term memory layer; FC: fully-connected linear layer; 
conv(n): 1D convolution layer with kernel size of n; maxpool(n): 1D max pooling layer with kernel size of n; numbers on the 
white squares: feature size; numbers under the white squares: number of channels. All unmarked arrows are fully-connected linear 
layers. We use ReLu for activation across all layers. Batch normalizations are added between convolutional layers. 

Machine learning 
The machine learning system is one of the most crucial com-
ponents of Soundr. It predicts the user’s head position and 
orientation while speaking any voice command. It consumes 
the data collected from the microphone array and produces 
three groups of values: position of the speaker (position), head 
orientation of the speaker (orientation), and how confident the 
system is about the position and the orientation (confidence). 

We first describe the architecture of the model and then list the 
techniques that we used to train the model. 

Model 
The machine learning model (shown in Figure 5) is composed 
of roughly three parts: 1) Input net: a convolutional neu-
ral network to process raw multi-channel audio and generate 
higher-level features, 2) LSTM net: a long-short term memory 
(LSTM) network 3) Output net: one linear layer followed by 
three stacks of linear layers dedicated to each one of the three 
groups of outputs. 

The Input net is similar to that used in prior work [31]. It ac-
cepts raw multi-channel audio samples as input and processes 
it through a stack of convolutional layers with decreasing ker-
nel sizes and sequence lengths and increasing channel sizes. 
Compared to prior work, our network is deeper and wider to 
accommodate our additional output values. 

The LSTM net addresses one of the limitations of prior re-
search. As mentioned in prior work [31], a longer audio input 
will result in better prediction results. However, if we simply 
increase the input length, our model will be harder to train due 
to its larger size and the model can only output results after 
a longer time interval, which is not ideal for an interactive 
application. An LSTM layer is a recurrent neural network that 
remembers inputs over arbitrary intervals. It produces one 
output and one hidden output. The hidden output is passed to 

the same layer of the network as it processes the next audio 
clip. Therefore, our machine learning model can make the 
decision not only based on the current audio clip but also audio 
clips that came before it. So with added LSTM layers, we can 
keep a reasonable network size and a fast response time, while 
the network leverages previous audio clips to produce a more 
accurate and stable result. 

Finally, in addition to position, our model has more outputs 
compared with prior work: orientation and confidence. We 
added a confidence output to make our model produce more 
robust results from human voice commands. As stated in 
Architectural overview, we computed a weighted average of 
the position and orientation results across a voice command 
with the predicted confidence results. This allows us to lever-
age segments with more distinctive sound and produce better 
overall result for each voice command. 

Training 
The hard part of training this network is that the initial confi-
dence reported from the network is inaccurate, so the model 
may be biased towards showing more accurate results for those 
audio clips assigned higher confidence initially. Therefore, 
we train this network with the prediction error of each clip 
individually and then with the weighted average error of an 
entire sequence in turn. 

We provide the model with a sequence of 20 consecutive 0.1 
second audio clips in a batch size of 15 sequences in each 
training iteration. As stated above, in every 300 iterations, we 
train to minimize the loss of the position and orientation of in-
dividual audio clips compared with their ground truth for 200 
iterations and then train to minimize the loss of the weighted 
average position and orientation of the entire sequence compar-
ing with the average position and orientation of their ground 
truth. We use the Adam optimizer [12] with a learning rate of 
0.00003. 

Performance evaluation 
Since machine learning models perform best for the environ-
ment/user that it was trained on, we evaluate the machine 
learning model used in Soundr with different configurations 
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of training and testing data, shown in Table 2. For each con-
figuration of training and testing data, we train the model for 
160,000 iterations. For some configurations, we perform a 
fine-tuning procedure that trains the model for another 20,000 
iterations on a selective set of training data. After that, we run 
the model on the test set and compute the average error. 

In the first configuration, we test the best-case scenario for 
our machine learning model, where we have the resources to 
create a personalized model and we train for a specific user 
and the environment. To do this, we randomly selected one 
male and one female participant from the office dataset, one 
male participant from the living room dataset and one female 
participant from the conference room dataset, and used their 
data from the last lap as testing data. We trained the model 
with all the other data that we have. Then we fine-tuned each 
model using the data collected from the same user. The results 
show that our model can predict position with an average error 
of 0.31m and orientation with an average error of 34.3°. 

In the second configuration, we test the result where we only 
have data from other users for the room the subject is in. We 
used the same participants in the first configuration, but we 
removed all the data from the subject in the training set and 
used them as test data. We also fine-tuned the model using 
data collected from the same room. The results show our 
model can predict position with an average error of 0.33m and 
orientation with an average error of 40°. 

In the third configuration, we test the performance of the 
model if we have neither data from the same room or from 
the same user. We removed all the data from the conference 
room dataset, trained the model using all the other datasets, 
and test the model on the conference room dataset. We did not 
fine-tune in this configuration. The results show our model 
can predict the position with an average error of 0.57m and 
the orientation with an average error of 57°. 

The best prior work on speaker position prediction with a sim-
ilarly sized microphone array [30] has an average positional 
error at 0.5m (showing in Table 2) when the same room is 
used for training and evaluation. Soundr produces a better 
result when the testing data is collected from the same room 
(configurations one and two) and can produce comparable 
results even if tested on a new room without training data. 
On the orientation side, we could not find any prior work on 
head orientation prediction with real human data with a single 
microphone, so we compare with the best prior work [23], 
which predicts a similar metric with multiple microphone ar-
rays. Note that as shown in prior work [8, 28] on position and 
orientation prediction, a larger microphone array can produce 
better results. Our results in the first two configurations are 
slightly worse than the 29.07° average error achieved in that 
paper, but still better than the baseline condition [4] mentioned 
in that paper (44.48°) even with only a single microphone ar-
ray. This shows that our model is better than prior work so that 
it can process less ideal signals and produce similarly accurate 
results. We also tried to use only the Input net without the 
LSTM net, confidence output, and weighted average (similar to 
Vera-Diaz et al. [31]) for an ablation study with the same user, 
same room configuration. The ablation study shows that the 

Configuration 
Average 
position error (m) 

Average 
orientation error 

Same user, 0.31 34.3° same room 
Different user, 0.33 40.0° same room 
Different user, 
different room 0.57 57.0° 

Ablation Study 0.75 77.6° 
Baseline-1 [30] 0.50 -
Baseline-2* [23] - 29.1° 
Baseline-3* [4] - 44.5° 

Table 2: Machine learning results for Soundr 
*: requires multiple microphone arrays 

Soundr model with our modifications performed much better 
than a simple CNN on our dataset. 

EXAMPLE APPLICATION DESIGN 
Current generation smart speakers only support controlling 
smart home devices using the device’s name. With Soundr, 
a virtual assistant would be able to know more information 
from the user’s request, including the user’s head position 
and orientation. We describe two common requests that can 
be fulfilled well with Soundr. The first is to directly control 
appliances with Soundr informing the system which device 
the user is intending to control (“Turn on this light”). The 
second is to ask the system to fulfill their need using Soundr 
informing the system which devices are relevant to the user’s 
environment (“Make the brightness higher in this area.”). We 
will discuss how we implement those examples with Soundr, 
and how we evaluate our solution in a user study. 

Direct control of smart home appliance 
For this type of request, the system uses the user’s head po-
sition and orientation to figure out the user’s references. We 
think this is useful due to prior work on human-machine dia-
logues [20], which stated that users are more likely to verbalize 
the subject, verb, and the object, but would describe locative 
information in another modality. Soundr is able to allow users 
to describe the action and type of the object verbally and 
provide the position of the appliance using head orientation. 

To achieve this, we designed an evaluation function to rank 
each device according to the user’s position. The intuition is 
that the user is more likely to select the device that is closer 
to the user’s position and closer to the user’s current head 
orientation. We define the logical distance of device x, dx, as 

−
where rx is the Euclidean distance between device x and the 
user’s position, and θx is the angular difference between the 
user’s head orientation (as predicted by Soundr) and the direc-
tion of device x relative to the user. A lower distance means 
that this device is close to what the user intends to select. 

Figure 6 shows the contour of the positions that will have the 
same logical distance. The equation forms elliptical contours 
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Figure 6: Device distance for direct control. The user is at 
(0,0) and is facing the x-axis. 

that are in front of the user’s talking direction. Positions with 
lower distance are closer to the user’s current position and 
positions with higher distance are farther away from the user’s 
position but still roughly in front of the user. Positions that 
are far behind the user’s talking direction get assigned a very 
large distance since they are unlikely to be the user’s intended 
target. 

We set a hard threshold so devices with a logical distance 
greater than 4.0 will never get selected. For those devices with 
distances lower than the threshold, we sort them according 
to their logical distance in an ascending order {x1,x2, ...,xn}. 
Instead of just taking the device with the lowest distance, x1, 
we want to ensure we do not select the wrong device when 
two devices are close in their logical distances. We consider 
all devices whose logical distance is no greater than dx1 + 1.0 
to be candidate devices. We then send an “identify”4 action to 
all of these devices and ask the user to clarify. The user can 
specify the device by saying its relative position, such as “the 
right one”, or they can move to a slightly different position 
and say “this device”. With the extra information, Soundr can 
further confirm the user’s intended device to control. 

Intention-based control of smart home appliances 
Instead of directly operating a single device, in many cases, 
the user is trying to achieve some goal. For example, the user 
may want to make an area brighter. He or she can either turn 
on a few lights that are responsible for lighting up the area 
(direct control), or just tell the system that he or she wants to 

“make the area brighter” (intention-based control). 

To support intention-based control, Soundr not only acquires 
the 3D positions of a device during configuration, but it also 
acquires the region that the device may have an effect on, 
which we call the “effective range”. For example, the effective 
range of a ceiling light may be the region right under the light, 
and the effective range of a fan may be an area in front of 
the fan. With this effective range, we can determine if the 
4The identify action is commonly supported by IoT devices for 
notifying the user about a specific device. For example, the identify 
action on a connected lamp is usually a quick on and off cycle. 

user’s position when they issue the command is within the 
range of any devices that can help achieve the user’s intention. 
If any devices are found, we can then command the devices 
to satisfy the user’s intention. For example, the user can say 

“make the area brighter here” and Soundr will automatically 
increase the brightness of the ceiling lights that affect the area 
in question. 

Configuration of smart home appliances 
To configure a device to work with Soundr, the user needs 
to let the system know where the device is in 3D space and 
optionally what is the effective range of the device. To tell the 
system where the devices are, the user first notifies the system 
which device he or she intends to configure by either using an 
app or pressing a physical “configuration” button. Then the 
user speaks “this is the device” from multiple different angles 
to the device. In this way Soundr will be able to acquire a few 
positions and directions of the user’s configuration command. 
Let the i th configuration command be represented by a ray 
with a position vector ~ui and a unit direction vector ~vi, 1 ≤ i ≤ 
n, where n is the number of commands issued. Let ~px be the 
position of device x. The distance between device x and the 
i th ray, dix, is defined as: � 

dix = 
||~px − (~ui + ti ∗~vi)|| 
||~px −~ui|| 

ti ≥ 0 
ti < 0 

(2) 

where 

ti = ~vi  (~px ~ui) (3) · −
That is, dix is the distance between device x and the i th ray if 
the device is in front of the user; otherwise, it is simply the 
Euclidean distance between the device and the user. 

The total distance between the device and all the rays is thus: 
n 

D(px) = ∑ dix (4) 
i=1 

To solve for the unknown device location px, we use a Gauss-
Newton solver to find px that minimizes the total distance 
with all the rays. In practice, the user only needs to identify 
a device four times to accurately pinpoint the position of the 
device. 

For defining the effective range of a device, the user also 
first notifies the system which device he or she wishes to 
configure and then speaks “I’m in range”. A circular region 
with a diameter of one meter will be created and added to the 
effective range of the device. The user can do this multiple 
times to expand the effective range of a device. 

Evaluating user preference with Soundr 
To evaluate users’ subjective preference for Soundr, we con-
ducted a user study and asked users to compare Soundr with 
two existing baseline methods of controlling IoT appliances. 
The first baseline method (basic light) is to use voice to control 
devices by name. The second baseline method (AR light) is to 
use a commercial phone-based AR app [2] to control devices 
by pointing a phone at them. We used the same pipeline for 
voice recognition in the basic light condition and the Soundr 
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Figure 7: Room layout for user study. 

condition to keep the comparison fair. We asked the user to 
use all three conditions to configure the lights and control the 
lights according to a few scenarios we gave them. 

Setting 
To give the user the full experience of configuring and using 
these methods to control smart home appliances, we used the 
same office space as was used for data collection. We de-
ployed seven internet-connected lights in the space, as shown 
in Figure 7. Four of them are ceiling lights and three of them 
are mood lights. The ceiling lights were hung from the ceiling 
and the mood lights were placed on the ground. Two tables 
and two chairs were placed in the room to simulate a shared 
office space. The participant was asked to sit at the table on 
the right, and the table on the left was used to simulate a table 
for another coworker. Two mood lights (right and bottom) are 
for the user and one mood light (left) is for the coworker. Each 
pair of ceiling lamps, on the left and on the right, is controlled 
by the same switch and is thus treated as one unit. This made 
a total number of five devices (two ceiling light pairs and three 
mood lights). For Soundr all five devices support direct control 
and the ceiling lights support intention-based control. 

Tasks 
Our study follows a within-subjects design and consists of 
three counter-balanced conditions. We first asked each par-
ticipant to configure the lights using three different methods. 
To reduce time, we preconfigured 3 of the 5 devices, so the 
participant only needs to configure one ceiling light and one 
mood light. For the basic light condition, the participant used 
the Apple Home app to name each light. For the AR light 
condition, the user used the AR app to add the devices into 
the 3D space. For Soundr, the user configured the position 
of both lights by saying “this is the light” four times towards 
each device for direct control. For the ceiling light, since it 
supports intention-based control, the user also needs to be in 
the effective range of the device and say “I’m in range”. After 
each condition, we asked them to fill out a questionnaire about 
their experience5. 

After configuration, we teach the participant how to control 
the appliances in all three conditions. For the basic light 
condition, the user can control a device using its name. For 
example, the user can control a device named “table lamp” by 

5The questionnaire can be found in the Auxiliary Materials. 

saying “turn on the table lamp”. For the AR light condition, 
the participant uses the phone app to point towards the device. 
The app overlays a slider-like object over every configured 
smart light, and the user can turn on and off the light by tapping 
on the slider. Note that the AR app required recalibration every 
time the app launched. For Soundr, the participant can either 
control each individual light using direct control by saying 

“turn on the light” or they can control the ceiling lights using 
intention-based control by saying “make this area brighter”. 

After getting familiarized with the controls, we asked the 
user to perform a series of tasks according to four different 
scenarios we designed for all conditions. The first scenario 
is when the user just arrived at their IoT-equipped office. We 
asked them to make their work area brighter by turning on the 
ceiling light. The second scenario is when the user wants to 
watch a movie. We asked them to make their work area darker 
by turning off the ceiling light and turning on both of the mood 
lights in their area. After the movie, they are to turn the ceiling 
light back on. The third scenario is when the user leaves the 
office. We asked them to turn off their ceiling lights and their 
mood lights. The fourth scenario is when the user tries to help 
their coworkers turn the lights off. We asked them to turn off 
the ceiling light and the mood light for their coworker. Note 
that for the AR light condition, since the tasks are usually hours 
apart in the real world (“turn on the light when coming to work” 
and “turn off the light when leaving work”), the user is likely 
going to close the app and lock their phone between scenarios. 
So we asked them to manually close the app between scenarios 
to simulate the inconvenience of having to relaunch the app 
every time they wanted to control their IoT devices in the AR 
light condition. After each condition, we asked them to fill 
out a questionnaire about their experience and a NASA-TLX 
questionnaire to measure the cognitive load of the task. 

Participants 
We recruited 12 participants (5 female), and none was in the 
data collection study, aged 21 to 34 (median 26). Each partici-
pant was compensated with a $15 gift card. 

Results 
As shown in Figure 8, in the Soundr condition, users com-
pleted their control task faster than in the basic light (paired 
t-test p = 6.48 ∗ 10−5) and in the AR light condition (paired 
t-test p = 0.03). The configuration task takes longer in the 
Soundr condition than in the AR light condition (p = 0.0001). 

From subjective feedback, we find that users think the Soundr 
condition is better than the basic light condition on ease of 
control (p = 0.049). Four users complained that the voice 
recognition system was inaccurate, which leads to a poorer re-
ception of our technique. One of them also mentioned that the 
latency of the voice feedback in both the basic light condition 
and the Soundr condition caused frustration for him. 

We also gathered other subjective feedback from our partici-
pants: Three users mentioned that remembering the name of 
each device is hard. Three users suggested that we integrate 
some functionality of Soundr and the basic light condition 
together. For example, user 5 suggested we should allow con-
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Figure 8: User study result Left: Time comparison between three conditions Right: Questionnaire result (last five questions are 
from NASA-TLX) *: statistically significant (p<0.05) 

trolling a device by its name and by talking towards it so that 
the user can make the choice depending on the situation. 

Overall, we observed advantages of Soundr in task completion 
time and user’s perception of ease of control and a slight 
disadvantage on time for configuration. We also learned that 
our current implementation of Soundr has some problems with 
voice recognition, but that is out of the scope of this paper. 

ADDITIONAL APPLICATIONS SCENARIOS 
In our example application design section, we used Soundr 
to configure and control IoT devices. There are many other 
possible applications, as discussed below. 

IoT device query, control, and configuration 
Soundr can be used for many other scenarios similar to an 
AR-based IoT control system [32]. Soundr can be used to 
query the status of IoT devices. For example, “What is the 
IP address of this printer?” in a printing room with many 
printers, or “Call customer support for this washing machine.” 
in a laundry room. Soundr can also be used to configure 
relationships between IoT devices. Such as, “Control this 
light using this smart button”; “When the air quality is bad, 
turn this light red.” Soundr can also be used to provide context 
for device control (e.g., ‘‘Clean up this area, Roomba.”). 

Meeting Assistant 
Prior work on speaker diarization studied using a microphone 
array to predict speaker position and segment the transcrip-
tion of multiple speakers [33]. Since Soundr provides better 
position prediction than prior work, it can be used to further 
enhance the accuracy of speaker diarization. Furthermore, 
Soundr can also provide speaker orientation, which is previ-
ously infeasible with a single microphone array. This infor-
mation can even help figure out the spatial references made 
during the meeting, such as “I’ll send you the files afterward”. 
The speaker position and orientation can be used to figure out 
who “you” is referring to in the last example, and the assistant 
can automatically send the files to the correct person. 

Indoor navigation 
Soundr can also be used in hands-free indoor navigation. Usu-
ally, indoor navigation requires the user to carry a specific kind 
of electronics device or requires video recording throughout 

the building, which may not be acceptable to the occupants 
for privacy reasons. With Soundr and a set of smart speakers 
deployed within a building, we can allow any person in the 
building to ask for directions verbally. Soundr can be used to 
figure out the exact location and orientation of that user and 
provide specific navigation instructions, such as “Turn left. 
Walk 10 steps and the room will be on your left.” 

LIMITATIONS AND FUTURE WORK 
Although we have tested the system in more environments than 
prior work [26, 27, 31], more testing is needed to generalize 
to different environments. Also, Soundr did not perform as 
well if it has not been trained for a given environment or user. 
This means that if we want to deploy Soundr today, we need to 
calibrate a room with a VR headset when Soundr is installed. 
Note that a VR headset is unnecessary to use Soundr. By 
collecting sufficient data across environments and users, it 
may be possible in the future to provide a pre-trained model 
that works across environments so no calibration is required 
in deployment. 

Currently, Soundr only uses the user’s position and orientation 
to figure out the references. Future systems can leverage the 
referential terms that the user uses to further improve the result. 
For example, when the user says “Turn on this ceiling light”, 
we can ignore any light that is not a ceiling light. 

CONCLUSION 
Soundr shows a promising future where smart speakers can 
better serve users’ requests by knowing their head position 
and orientation. Soundr can achieve this vision using off-
the-shelf smart speakers; no additional hardware is needed. 
By making this technology more accurate and more versatile, 
future buildings can be less static and more responsive to users’ 
needs. 
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