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Figure 1: HybridTrak is a VR full-body tracking solution that augments inside-out upper body trackingwith a single uncalibrated
webcam for lower body tracking. This approach provides accurate lower-body tracking, which normally requires a cumbersome
outside-in VR setup, with similar convenience to inside-out tracking. We developed a novel full-neural solution that combines
estimated 2D poses from the webcam and upper-body positions and orientations from the VR headset to produce 3D poses of
the user in VR coordinates. By emulating virtual devices, HybridTrak is compatible with current VR applications that support
full-body tracking on SteamVR.

ABSTRACT
Full-body tracking in virtual reality improves presence, allows in-
teraction via body postures, and facilitates better social expres-
sion among users. However, full-body tracking systems today re-
quire a complex setup fixed to the environment (e.g., multiple light-
houses/cameras) and a laborious calibration process, which goes
against the desire to make VR systems more portable and inte-
grated. We present HybridTrak, which provides accurate, real-time
full-body tracking by augmenting inside-out1upper-body VR track-
ing systems with a single external off-the-shelf RGB web camera.
HybridTrak uses a full-neural solution to convert and transform
users’ 2D full-body poses from the webcam to 3D poses leveraging
the inside-out upper-body tracking data. We showed HybridTrak
is more accurate than RGB or depth-based tracking methods on
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the MPI-INF-3DHP dataset. We also tested HybridTrak in the pop-
ular VRChat app and showed that body postures presented by
HybridTrak are more distinguishable and more natural than a solu-
tion using an RGBD camera.
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1 INTRODUCTION
Virtual reality (VR) has great potential in many applications includ-
ing social networks, gaming, and entertainment. However, current
widely adopted VR systems can only track the user’s head and
hands positions, and not the rest of the user’s body. Therefore, most
VR apps today either only render the user’s upper body or pre-
dict the user’s lower body position according to their upper body
movements. The resulting floating avatars and unsynchronized
leg movements may break the user’s illusion, hinder the user’s
expression, and limit the types of apps that developers can build.

However, current full-body tracking solutions have various limi-
tations. Sensor-based or outside-in tracking can produce accurate
results, but users need to either wear bulky 3D positional trackers
all over their body [10], or use RGBD cameras that require extensive
calibration and are hard to acquire [9] (outside-in tracking). On the
other hand, recent commercial VR upper-body tracking systems
rely on egocentric tracking cameras (referred to as inside-out track-
ing), which require minimal setup, greatly reduce the barrier of
entry to VR, and are generally preferred by users2. However, re-
search has shown that egocentric cameras cannot provide adequate
tracking for the lower body due to intra-body occlusion [1].

Combining the advantages of inside-out and outside-in tracking,
we present HybridTrak, which offers an economical, calibration-
free, and user-friendly solution for full-body tracking. The novel
combination of a single uncalibrated camera and existing inside-
out upper-body tracking of HybridTrak is optimal for full-body
tracking: the former can see the user’s feet without occlusion of
the user’s upper body (more discussion in Section 5.1); the latter
can see the user’s hands. HybridTrak first generates 2D full-body
poses from the webcam and 3D upper-body poses from an off-the-
shelf inside-out tracking system. These data are fed into a pose
conversion neural network to produce the lower-body positions
and orientations. Combined with the upper body positions from
the egocentric cameras, our full-body tracking data can be used by
any SteamVR app without requiring any modifications.

We evaluated HybridTrak by objective performance comparison
on existing datasets and subjective perception evaluation on pose
naturalness and clarity. For objective performance comparison, we
found our hybrid tracking setup to be better than using a calibrated
RGBD camera with a naïve algorithm for lower-body tracking (on
the Human3.6m dataset [14]). We also found our algorithm to be
better than a baseline algorithm built with VNect [26] (on the MPI-
INF-3DHP [24] dataset). For pose naturalness and clarity, we found
that users (𝑁 = 12) can differentiate five different poses with com-
plex lower-body motion with a higher accuracy using HybridTrak
than the other two solutions (RGBD camera and upper-body only
tracking). We also found that users rated the poses generated by
our system more natural than the baselines.

The contributions of this project include:

(1) A novel system design that can provide a robust and accurate
full-body tracking capability for VR with the addition of a
single uncalibrated RGB camera.

2Users show clear preference for inside-out tracking systems as the adoption of these
systems increased from 6.4% to 67% in just a year (according to the Steam hardware sur-
vey between August 2020 and August 2021 https://store.steampowered.com/hwsurvey)

(2) We introduce a full-neural full-body tracking solution for
VR that is more accurate than a baseline that requires an
RGBD camera. Whereas the baseline RGBD algorithm gets a
Mean Per Joint Position Error (MPJPE) of 0.136m and a Mean
Per Joint Rotation Error (MPJRE) of 0.609rad, HybridTrak
achieves a better result of 0.098m and 0.282rad, respectively.

(3) A user study using a popular VR chat room application shows
that body postures presented by HybridTrak are more distin-
guishable and more natural compared to an RGBD camera-
based tracking system.

2 RELATEDWORK
The related work to HybridTrak can be categorized as: 1) Vision-
based 3D body pose tracking 2) Non-vision-based 3D body pose
tracking, and 3) Other hybrid pose tracking methods.

2.1 Vision-based 3D body pose tracking
Similar to HybridTrak, prior work has tried to use computer vision
to detect 3D body poses for a variety of applications. Traditionally,
vision-based 3D pose tracking is done with an RGBD camera [9,
19, 43]. However, RGBD cameras usually have a limited range, are
error-prone in sunlight, and are not accessible to every VR user.
RGB cameras are cheaper and have fewer of those restrictions.
Recently, many have researched the area of 2D human body pose
estimation using a single RGB camera [3, 5, 8, 40]. However, when
it comes to 3D pose estimation with a single RGB camera, it is hard
to estimate the size and global position of the skeleton because
these systems lack information on the distance between the user
and the camera.

Most of the prior work uses either visual cues [2, 25–27], tem-
poral geometry cues [18, 29], or both [6] to deduce a 3D skeleton
from one or more 2D images. These algorithms are usually compu-
tationally intensive, preventing them from being used in a latency-
sensitive scenario such as VR. Also, these algorithms usually predict
the body pose in a coordinate system that is relative to one of the
joints of the user’s body, usually the pelvis, which makes it hard to
project the tracking result onto the VR tracking space. Some prior
work tries to estimate the global position in real-time by data-fitting
the estimated 3D pose with the 2D pose[25, 26], but this requires
accurate knowledge of the intrinsic and extrinsic parameters of the
camera and is prone to noise in the predicted skeleton sizes, which
would result in awkward offsets in the camera direction. In VR,
as the user’s viewport information is estimated by a much faster
and more accurate system (VR tracking), any drift between the
full-body tracking and the user’s viewport may dislocate the user’s
body from their head, which is very disturbing for the user. In con-
trast, HybridTrak processes the image data with the conventional
(faster and more accurate) VR upper-body tracking information,
which does not require calibration and produces a more accurate
and coherent full-body 3D pose estimation.

Besides single-camera 3D pose estimation, researchers have also
tried to use multiple cameras for full-body tracking. They usually
leveragemultiple neural networks to detect 2D poses in each camera
and fuse the partial results to yield more accurate 3D poses [15, 32].
However, this requires the user to have a calibrated multi-camera
setup, which is expensive and hard to configure. Other prior work

https://web.archive.org/web/20210917170819/https://store.steampowered.com/hwsurvey
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leverages single or multiple cameras on the user’s body [1, 12, 34,
36, 41]. However, due to lens distortion and body obstruction, the
accuracy of these systems is still pretty low, especially in the leg
area, which is problematic for current VR tracking systems.

2.2 Non-vision-based 3D body pose tracking
Other body pose estimations have been proposed that are not based
on computer vision. Commercial motion capture systems, such
as Vicon [38] and OptiTrack [28] use multiple cameras and retro-
reflective dots positioned on the user’s body to accurately track
multiple positions on the user’s body. While being used as ground
truth in many pose tracking datasets, their expensive and compli-
cated setup prevents them from being widely adopted by average
VR users. Others have proposed using wearable trackers that are
coupled with an external fixed tracking reference, such as solu-
tions presented by Islam et al. [16], Pintaric and Kaufmann [30],
and SteamVR tracking [39]. These systems usually offer a limited
number of tracking points and require a fixed reference hardware
setup and calibration before usage. Other alternative methods have
also been proposed, such as using a pressure-sensitive floor [4],
radio signals [42], or multiple IMUs [35]. However, the accuracy
obtained by these solutions is usually limited.

2.3 Other hybrid pose tracking methods
Researchers have also explored different pose tracking methods
by processing input from multiple sources. These approaches are
mostly focused on fusing IMU and vision-based pose estimation.
Pons-Moll et al. [31] first proposed the idea of combining IMU data
with RGB images to produce better tracking results. More recently,
researchers proposed using neural networks and information from
multiple RGB cameras [11, 23, 37]. Such work improved accuracy
by adding inputs in more modalities, but at the cost of more com-
plicated setups. In contrast, HybridTrak improves the accuracy of
vision-based tracking by using existing VR tracking systems to
minimize the setup cost.

3 SYSTEM DESIGN
We present the system design of HybridTrak in this section with
an overview of how the HybridTrak system works, as well as our
design rationale, the neural networks used by HybridTrak, and
other implementation details.

3.1 Design considerations
HybridTrak aims to provide regular consumers accurate full-body
tracking with minimal setup overhead. HybridTrak uses a single
uncalibrated webcam and a common inside-out upper body track-
ing system. The user only has to place a camera in a place where
the user’s body can be seen without occlusion, put on the VR head-
set and controllers, and enter the VR as usual. To give the user a
seamless and responsive experience with HybridTrak, we designed
the system with the following goals:

(1) Calibration free (no need for the extrinsic and intrinsic ma-
trix of the camera),

(2) Accurate global positions, and
(3) Provide input that is compatible with existing VR systems.

2D poses from RGB camera
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VR Applications

2D to 3D with coordinate mapping

243

243
243

21x3

3x7

243

84

243
241

1024

conv(3d1)

243
235

1024

conv(3d3)

243
235

1024

conv(1d1)

243
217

1024

conv(3d9)

243
217

1024

conv(1d1)

243
163

1024
conv(3d27)

243
163

1024

conv(1d1)

1

1024

conv(3d81)

1

1024

conv(1d1)

1

21

conv(1d1)

(x, y, z)
(q

w , q
x , q

y , q
z )

3x4

3x3

tanh

N
orm

alized 2D poses
(x, y, confidence) 

U
pper-body tracking

(x, y, z, qw , qx , qy , qz )

Low
er-body tracking

(x, y, z, qw , qx , qy , qz )

Figure 2: System architecture of HybridTrak: HybridTrak
first processes the webcam footage to extract normalized 2D
poses. HybridTrak’s pose-conversion neural network then
processes the 2D poses from the webcam and the upper-body
tracking coordinates from an existing VR tracking system
and converts the 2D poses to lower-body 3D poses in VR co-
ordinates. Finally, HybridTrak can emulate virtual tracking
devices with the user’s lower body tracking points and pass
through the data from inside-out tracking devices for the up-
per body. In this way, VR applications that support full-body
tracking on SteamVR can work without modification.

To render the body pose in VR properly, we need the user’s pose
in global coordinates in the real world space (z-axis is up). Also, we
wish to minimize the calibration process. While most prior work
can only predict the body pose relative to a body joint with an RGB
camera, some prior work [24] demonstrated methods to get the
global coordinates from 2D images. However, their method relies
on the accurate intrinsic and extrinsic matrix of the camera as well
as an estimation of the body skeleton of the user from the 2D im-
age, which is not always reliable. The resulting 3D poses may have
accuracy and latency that is acceptable for 2D games like those
built for the Kinect, but they do not meet the standard of keeping
people immersed and preventing them from getting dizzy in VR.
If these poses are used directly with existing VR headset tracking,
without calibration and without reliable skeleton size estimation,
the projected pose positions in world coordinates are likely to have
an offset from the user’s headset position, which is very disori-
enting. Since inside-out/egocentric tracking for the upper-body
is common and effective in commercial systems, we leverage the
upper-body tracking data to provide a calibration-free and accurate
lower-body pose estimation. In upper-body tracking systems, the
controllers held by the users contain markers and a motion sensor.
thus they can track the hand positions more accurately and reliably
than image-based pose estimation. We use those tracking points to
project the detected 3D pose back to the VR space.

HybridTrak is designed to work with existing VR systems to
provide the full-body 3D poses to VR applications. Currently, most
of the VR applications with full-body support use what is called a
six-point format3. It consists of the position and orientation of the
user’s head, waist, two hands, and two feet. However, most pose-
tracking algorithms today predict only the position, and not the

3see https://docs.vrchat.com/docs/full-body-tracking

https://docs.vrchat.com/docs/full-body-tracking
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Original COCO dataset Augmented COCO
dataset with headsets

Original model output Improved model output

Figure 3: We augmented the COCO dataset with images of
people wearing VR headsets and re-trained an improved
pose_resnet model with four more key points in the output.
The augmented dataset solves the problem that the origi-
nal model may treat part of the user’s body as flipped when
the user’s face is blocked by the VR headset. The added key
points allow HybridTrak to accurately estimate feet orienta-
tion.

orientation, of many more joints in the user’s body, while existing
VR games want the position and orientation of a smaller number
of joints. HybridTrak is fully compatible with existing VR applica-
tions as it directly generates the waist and feet tracking points that
include both the position and the orientation. HybridTrak can also
be configured to output more position points to provide a more
accurate estimation of the user’s full skeleton.

3.2 System architecture
With these design considerations, the overall architecture of HybridTrak
is shown in Figure 2. HybridTrak accepts input from two sources:
2D poses from an RGB camera and 3D upper-body inside-out track-
ing data. To generate the 2D poses input, we use a modified version
of pose_resnet [40] that works well with users’ images (even when
the VR headset is blocking their face) and can output extra key
points to provide the necessary foot orientation for VR full-body
tracking. For 3D poses, we use the internal headset and controller
tracking provided by the Oculus Quest. We use a pose-conversion
neural network that accepts the 2D poses and the 3D upper body
VR tracking data to produce 3D poses. By leveraging the tempo-
ral information from 2D poses and 3D upper-body tracking data,
HybridTrak can generate accurate 3D poses in VR space without
requiring prior calibration. Finally, we present the generated 3D
poses as virtual trackers to SteamVR, which allows unmodified
applications to read lower body tracking data from virtual trackers
generated by HybridTrak and get upper-body tracking data from
existing headsets and controllers.

3.3 HybridTrak algorithm
The HybridTrak algorithm consists of two steps:

(1) Generate 2D poses from the webcam.
(2) Map the coordinates of the 2D poses to those of the 3D poses.

3.3.1 Generating 2D Poses. Common 2D pose detectors usually
output 2D poses in the 17-key point COCO format [17, 22]. Al-
though these points are sufficient for representing positions of the
user’s body parts, they lack information about the orientation of the

user’s limbs. For HybridTrak, we especially care about the user’s
feet orientation, as they represent 6 out of the 18 degrees of freedom
in the user’s lower body. Another problem regular pose detectors
have is that their accuracy sometimes relies on the fact that the
user’s face is uncovered. In practice, we observed that a vanilla pose
estimation model tends to predict that the user is facing backwards
when the VR headset is blocking their face.

To address this problem, we trained our improved version of
the pose_resnet model [40]. Pose_resnet is a 2D pose estimation
neural network that uses a ResNet as the backbone for feature
extractions and adds a few deconvolutional layers over the last
convolution stage in the ResNet. It can provide great accuracy even
when the user has overlapping body parts and is standing in front
of a complex background. We added to pose_resnet extra feet key
points from the COCO-Wholebody [17] dataset. We also augment
the training data by generating images with an overlaid headset
from the original COCO dataset. To do so, we fitted a VR headset
onto a human head model and measured the 3D positions of the
key points on the head (nose, eyes, and ears from the COCO key
points, eye corners, ear corners, and chin from COCO-Wholebody
key points). We computed the 3D pose estimation for the headset
from these key points and overlaid the projected headset model
back onto the images in the COCO dataset. The results of the model
before and after our modification are shown in Figure 3.

On a side note, pose_resnet is chosen because it strikes a good
balance between accuracy and speed. For comparison, we tried
other top-down 2D body pose trackers like HRNet or OpenPose
for 2D pose tracking; however, they are noticeably slower than
pose_resnet and offer limited accuracy improvement for our use
cases (average precision from 73.7 to 77.0 on COCO test set for
HRNet). Notably, HRNet is less computationally intensive in theory,
but it runs slower on current hardware (acknowledged by the au-
thors on GitHub4). Other bottom-up pose trackers perform better
when there are multiple people, but that is rarely the case for VR
pose tracking. In our early experiments, we also found top-down
pose trackers to be more robust against self-occlusion, which is
common for VR.

We evaluated the accuracy of the model based on accuracy on the
COCO evaluation dataset with our headset augmentation.We found
that the model trained on our augmented dataset yields an average
precision (see COCO human pose benchmark [22] for definition) of
72.2, while a baseline model trained on the original COCO dataset
had an average precision of 65.4.

3.3.2 2D pose to 3D pose with coordinate mapping. The key chal-
lenge in HybridTrak is the mapping of the 2D pose coordinates to
lower-body 3D poses that are consistent with the 3D upper-body
tracking points (VR coordinates). We train a pose conversion neu-
ral network to directly process 2D poses from the webcam and 3D
tracking data from the inside-out upper-body tracking system and
use those to output the 3D poses in VR coordinates.

We used an existing 3D pose estimation dataset Human3.6m
to train this model. Although this dataset does not have tracking
data in the VR coordinate space, we compute the position and the
orientation of the tracking points used in VR from the position of the
existing annotated key points. For VR, the tracking points include
4see https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/issues/26

https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/issues/26
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Figure 4: Converting VR tracking points from the Hu-
man3.6m dataset. The black skeleton represents the Hu-
man3.6m dataset, and the RGB axes represent VR tracking
points. Red is front, blue is right, and green is up.

the head, two hands, waist, and two feet. For the head, we compute
the position by projecting the face5 point to the line segment
between head_top and neck. For hands, we compute the positions
by getting themiddle points between index_finger and wrist. For
waist, we computed the positions by getting the weighted average
point between neck_center (weight 1) and hip_center (weight 3).
For feet, we compute the midpoint between ankle and toe. Finally,
we use joints close to these points to compute the orientation of
those points. The final result is shown in Figure 4. The generated
head and hand points are used as input to the network and the
generated waist and feet points are used as reference output to the
network.

To train the network, we also generate the 2D pose from videos
captured in Human3.6m with the modified pose_resnet estimator
with feet key points (as described in Section 3.3.1). To ensure that
our model can generalize to an arbitrary camera configuration that
a user may have, we also normalize the 2D pose points to make the
result in the longer axis in x-y between [0, 1], and keep the aspect
ratio the same while scaling the other axis. In this way, even if the
user’s camera has a different focal point or pixel density (camera
intrinsic matrix), it should not affect the scale of the 2D pose.

We also apply a random rotation along the 𝑧-axis and a random
offset on the 𝑥𝑦-plane on the generated data as a data augmentation
method to make sure that the model can handle arbitrary offsets
and rotations between the camera’s viewpoint (extrinsic matrix)
and VR coordinates. This allows our model to work out of the box
with no prior calibration.

We adopt an architecture that is similar to VideoPose3D [29],
as shown in Figure 5. The network accepts 2D poses 𝑝 from our
modified pose_resnet, along with three of the upper-body inside-
out tracking points (head and hands) 𝑢, and produces three outputs
(feet and waist) 𝑙 with position and orientation. It uses a fully
convolutional architecture with residual connections. In training,
we compute 2D poses 𝑝 from images using the same modified
pose_resnet while calculating the upper-body 𝑢 and the lower-
body 𝑙 tracking points from tracking points of the Human3.6m
dataset. We use the 3D 𝑢 and 2D tracking points 𝑝 as input for the
pose conversion neural network. We then compare the output VR
tracking points 𝑙 ′ with the generated lower-body tracking points 𝑙

5All the “equal width font” words denote joints in the Human3.6m dataset.

with a Mean Per Joint Position Error (MPJPE) as loss for positions
and aMean Per Joint Rotation Error (MPJRE) as loss for orientations.

3.3.3 Implementation. For pose_resnet, we use YOLOv3 [33] as
the person detector for detecting the bounding box for pose_resnet,
and we use a modified 384x384 Resnet152 variant of the pose_resnet
model trained on our augmented COCO dataset with the COCO-
WholeBody annotations. We trained the HybridTrak’s pose conver-
sion neural network with 160 epochs, learning rate at 0.001, and
decay of 0.95 on every epoch. The training takes around 10 hours
on a machine with NVIDIA Tesla V100. For VR input and device
emulation, we communicate with OpenVR through its API. We
emulate three virtual trackers from our three predicted tracking
points, which make this system compatible with almost all VR pro-
grams supporting full-body tracking on the SteamVR store. We
tested the system on a computer equipped with an Intel i7-8700k
processor and an Nvidia RTX 2080Ti graphics card and we observe
that we can stably process the camera image from a Logitech C930e
webcam in 30fps. The frame processing latency of HybridTrak from
RGB image to 3D pose in VR averages 0.0827s, and the jitter is
0.0063s.

4 EVALUATION
We evaluate the effectiveness of HybridTrak in two ways: 1) objec-
tive performance comparison based on an existing dataset and 2)
subjective perception of pose naturalness and clarity by users in a
VR social network.

4.1 Comparison with RGBD-camera-based
algorithms

In this section, we discuss the performance comparisionwith RGBD-
camera-based algorithms. To evaluate the overall performance of
our system, we test the accuracy of the system in predicting the
waist and feet positions and orientations in the Human3.6m data
set. We use P9 and P11 in Human3.6m as the test set and the other
nine participants as a training set for HybridTrak.

RGBD-camera-based solutions are common among VR users.
These solutions also use cameras on the headset to track their
upper-body poses while using calibrated external RGBD camera
to track their full-body poses. However, unlike HybridTrak, these
systems ignore the upper body tracking points from the RGBD
cameras and only use the lower body tracking points with a fixed
transformation provided by an extra calibration step.

We set up a Virtual RGBD baseline by aligning the time-of-flight
camera image in Human3.6m with the RGB camera image to form
a virtual RGBD camera, and use the body skeleton detected by the
same modified pose_resnet model (as described in Section 3.3.1) to
generate 2D poses. Using a naive lifting method, similar to prior
work [43], we can extract 3D poses from the depth image. Then
we compute the positions and orientations for the lower-body VR
tracking points as described in Figure 3.3.2.

We also created an alternative method HybridTrak-transform
(see the detailed implementation in Appendix A) to test against the
full-neural solution of HybridTrak. In this method, we first convert
2D poses to 3D poses in camera space using a neural network
that is similar to VideoPose3D [29]. We then use “least-squares
fitting” to match the head and hands tracking points to the data
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Figure 5: HybridTrak’s pose conversion neural network: The model accepts VR tracking points for the head and hands and
2D pose estimation as input, processes it using a temporal CNN, and outputs full-body tracking results for the waist and feet.
conv(𝑛d𝑚): 1D convolution layer with a kernel size of 𝑛 and a dilation of𝑚; Slice and add: we slice the output of one layer
symmetrically and add the residue to the output of another layer; Boxes represent the feature vectors (numbers in the box are
the feature size; numbers under the box are the number of channels.); All unmarked arrows are fully-connected linear layers.
We use ReLu for activation across all layers. Batch normalizations are added between convolutional layers.

from inside-out tracking and produce a transformation between
the camera space and the real-world space. Finally, we apply that
transformation to the predicted waist and feet poses to produce
data for VR full-body tracking.

The results are shown in Table 1. HybridTrak shows the best
result for both position and orientation, and HybridTrak-transform
is second best, while the Virtual RGBD baseline gives the worst
result. The RGBD baseline results are comparable to prior work [43].
The rotation error is especially large for the RGBD baseline. Having
the feet and the waist pointing in the wrong direction can be very
disturbing for the VR user. We think that the large rotation error is
due to two reasons: 1) Both HybridTrak algorithms have a temporal
CNN to correct for temporal inconsistency, while the RGBD baseline
does not. 2) RGBD cameras may give a wrong estimation of the
position of the body parts that have been occluded. Note that due
to the labeling differences in the training data of pose_resnet and
our test set from Human3.6m, there may be a small systemic offset
between pose_resnet annotation and the ground truth, causing a
higher error in the evaluation result. Nevertheless, both HybridTrak
methods perform well given that all the coordinates are in global
coordinates and our HybridTrak methods do not need to know
the ground-truth transform between the camera space and the
real-world space.

When comparing within the two implementation of HybridTrak,
we noticed that HybridTrak’s full-neural solution is more robust
to pose tracking noise and requires less compute power, so we
used the full-neural solution in our user study. On the other hand,
HybridTrak-transform computes the transform matrix between the
camera space and the world space, which is useful on its own. We
can reverse the transform matrix to project the 3D positions of the
user’s head and hands to the camera space and reduce the workload
or improve the result of person bounding-box detection, which is a

crucial step in 2D pose detection. Since an RGB camera can also be
used to track objects of given sizes, with the help of this deduced
camera to VR transform, we can use it to project other objects in
the real world back to VR. These applications are harder to achieve
with a full-neural solution.

One limitation of the Human3.6m dataset is all the camera po-
sitions are at the same height (camera pitch). To test the perfor-
mance of our system with a wider range of camera pitch, we also
trained and tested theHybridTrakmodel on theMPI-INF-3DHP [24]
dataset, which has more variety of camera heights. One thing no-
table is that in the MPI-INF-3DHP dataset, the user is sometimes out
of the camera frame, in that case, we still feed the 2D key point de-
tection results with low confidence scores to the HybridTrak model.
Ourmodel shows a comparable result on theMPI-INF-3DHP dataset
with the result on the Human3.6m dataset despite the constraints
of the dataset, which means that the model can perform relatively
well when the camera pitch changes.

4.2 Comparison with other RGB-camera-based
algorithms

One major feature of HybridTrak is that we aggregrate the upper-
body inside-out 3D tracking data with the full-body webcam 2D
tracking data over a period of time and fully integrate them in
the system’s neural network. To evaluate whether this system de-
sign is beneficial, we compared our system with a baseline that
directly produces 3D relative tracking points from the RGB camera,
and then simply uses head position to compute the absolute posi-
tions of these tracking points. The baseline solution is built with
VNect [26] on MPI-INF-3DHP. Although the original VNect papers
presented methods of estimating the global positions of joints, we
found that although the output global coordinates are consistent
with themselves over time, they are not always aligned with the
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Table 1: Overall performance comparison: We compared HybridTrak and HybridTrak-transform with a baseline based on
data from a virtual RGBD camera. Both of our algorithms performed better than the baseline. Among our two algorithms,
HybridTrak has a slightly better result on both position and orientation prediction. The best result on this metric is underlined.

Model name Dataset GT transform Position Error MPJPE(m) Rotation Error MPJRE(rad)

Virtual RGBD Human3.6m YES 0.136 0.609
HybridTrak-transform Human3.6m NO 0.104 0.306
HybridTrak Human3.6m NO 0.098 0.282
HybridTrak MPI-INF-3DHP NO 0.123 0.350

Table 2: Global coordinates performance comparison: We
compared the results of a variant of the HybridTrak algo-
rithm that predicts 17-joint global positions similar to prior
work.We found that our algorithmperformed better in terms
of position error on the MPI-INF-3DHP dataset compared
with VNect [26].

Model name Dataset Position Error MPJPE(m)

VNect MPI-INF-3DHP 0.455
HybridTrak (17 joints) MPI-INF-3DHP 0.138

ground truth. So the baseline solution first estimates the relative
3D positions with VNect, then computes the global coordinates by
aligning relative positions with the ground-truth head positions.
For HybridTrak, we retrained our model to accept 2D positions
from the camera footage in the MPI dataset as well as the 3D head
and hands tracking data to produce all of the 14-joint positions in
MPI-INF-3DHP. The head and hands tracking points we provided
to HybridTrak are head (7th), left_hand (13th), right_hand (18th)
points in the MPI-INF-3DHP, respectively.

The results are shown in Table 2. HybridTrak has much better
performance in terms of position error than the baseline system
based on VNect. Note that the VNect paper reported an MPJPE
of 142mm, but the result listed in their paper is computed using
the ground-truth bounding boxes and waist (pelvis) 3D positions.
Since this information is not available in real-world live-inferencing,
we used the same bounding boxes generated by the YOLOv3 for 3D
pose estimation in VNect (the same bounding boxes for 2D pose
estimation in HybridTrak). For global position estimation, we used
head position to convert relative coordinates to global coordinates.
Although not available in real-world usage, we also conducted the
evaluation when ground-truth pelvis position is used for global
position estimation. The MPJPE in this case is 0.325m; it is slightly
better than using head positions, but still worse than HybridTrak.

These results show that the architecture of HybridTrak can ef-
fectively leverage the power of inside-out upper-body tracking and
data from the external camera to generate more accurate global
positions for full-body tracking in VR.

4.3 User Study
One important use case of full-body tracking is to provide better
social interaction between users in VR. We conducted a user study

in VRChat6, a VR social network that supports full-body tracking,
to see if our 3D pose in VR is natural and distinguishable from
another chat user’s perspective. VRChat, like many other programs
supporting full-body tracking on SteamVR, expects three additional
tracking points with position and orientation from the SteamVR
driver, one for the waist and two for the legs. HybridTrak can
emulate these tracking points using a custom-made SteamVR driver
(as described in Figure 2).

We compared HybridTrak both with another popular trackerless
full-body tracking system called KinectToVR7 and with upper-body
only tracking, which is similar to most commercial VR products. In
the upper-body only tracking condition, we do not feed any lower
body tracking points to SteamVR, and VRChat has an internal
mechanism to generate a lower body posture that fits the position
and orientation constraints of the user’s head and hands.

4.3.1 Task. The experimenter invites the participants into a special
VRChat room built for this study, After the consent forms are filled
out, the experimenter gathers basic demographic information from
the participants. We then ask the participant to evaluate three full-
body tracking systems: 1) HybridTrak, 2) KinectToVR, and 3) upper-
body only tracking. The three systems are presented to users in a
counter-balanced order. In each case, the experimenter performs
15 poses (five different poses, each pose performed three times)
in random order while using the tracking system currently being
evaluated.We selected five representative poses from an existing 3D
pose tracking dataset [14, 24] with distinct leg postures and similar
upper-body positions (see Figure 6), so as to highlight differences
in lower-body tracking.

In VR, the participants can see an image with the five reference
poses (top row in Figure 6). After each pose is presented using the
experimenter’s VR avatar, the experimenter asks the participant
to identify which pose it is. Usually, camera-based pose tracking
methods show a better result at the same angle as the capture
camera. We asked the participants to observe the experimenter at
any position that they felt comfortable in. This allows participants
to evaluate the pose generated by HybridTrak at an arbitrary angle
in 3D space instead of viewing it from the same angle as the webcam
(in HybridTrak)/Kinect being used for tracking to demonstrate the
true performance of the tracking system in VR.

After the participants see how each system performs, the experi-
menter asks the user about whether they agree or disagree with the
following statements (7-point Likert scale, from “Strongly disagree”

6https://www.vrchat.com
7KinectToVR Kinect Full-Body Tracking: https://k2vr.tech

https://www.vrchat.com
https://k2vr.tech
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Figure 6: Poses used in the user study: The experimenter performed 15 poses in random order (each of the five poses is
presented three times) and asked participants which pose they thought the experimenter was presenting. The user can view the
experimenter’s posture at any angle that they feel comfortable with. In the end, we asked them about their overall perception
of the presented full-body tracking systems.

to “Strongly agree”): 1) “The presented body postures are natural.” 2)
“The transitions between body postures are natural.” At the end of
each condition, we also ask the participants for subjective feedback
on the current system. At the end of the user study, we ask the
participants which system they would rate the best and why.

4.3.2 Participants. We recruited 12 participants (six female) in our
study, aged between 18-52 (median 25.5). Most of our participants
were frequent VR users, with four of them using VR weekly, three
of them using VR daily, and two of them using VR monthly. The
other three participants only use VR a few times a year. Most users
have little experience using full-body tracking systems. Eight of our
participants have never used full-body tracking systems, two use
these systems a few times a year, and two use full-body tracking
systems monthly.

4.3.3 Results. The results of all the pose identification responses
across users are shown in Figure 7. Participants identified 99% of
the poses correctly in the HybridTrak condition, while there were
more misidentifications made in the KinectToVR and no full-body
tracking conditions. We also computed the recognition accuracy
for each user in each of the three systems (Figure 8) and ran paired
t-tests between HybridTrak and the other two baseline systems. We
found that participants can identify poses significantly better in the
HybridTrak condition than in the KinectToVR condition (𝑡 = 3.84,
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Figure 7: Confusion matrix of the perceived experimenter
poses for the three tracking solutions. 1-5 corresponding to
the poses in Figure 6. Only one out of 180 responses for the
HybridTrak solution was incorrect.

𝑝 = 0.0028) and in the upper-body only tracking condition (𝑡 = 9.31,
𝑝 = 1.5𝑒 − 6).

The results of the user’s perceived naturalness of the poses
and the naturalness of the transitions between poses is shown
in Figure 9. We computed paired t-tests and found statistically
significant differences between HybridTrak and the baseline con-
ditions in terms of posture naturalness (𝑡 = 8.62, 𝑝 = 3.2𝑒 − 6
and 𝑡 = 6.14, 𝑝 = 7.3𝑒 − 5). We also found a statistically signifi-
cant difference between HybridTrak and KinectToVR in terms of
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Figure 8: Accuracy of perceived poses for the three track-
ing solutions: We found the pose perception accuracy in
the HybridTrak condition is significantly higher than in the
KinectToVR and in the upper-body only tracking systems.
**: p < 0.005

HybridTrak

Figure 9: Naturalness of the presented postures and transi-
tions between them for the three tracking solutions: Par-
ticipants rated poses presented by HybridTrak to be more
natural than the other solutions. They also found the tran-
sitions in the HybridTrak system to be more natural than
those in the KinectToVR system. **: p < 0.005

transition naturalness (𝑡 = 6.19, 𝑝 = 6.7𝑒 − 5), but the difference
between HybridTrak and upper-body only tracking was not sig-
nificant (𝑡 = 1.89, 𝑝 = 0.085). We think the reason for the small
differences in perceived transition naturalness between HybridTrak
and upper-body only tracking is that when VRChat does not have
lower body info, it generates smooth-looking transitions even if
they do not represent the actual state of the experimenter’s lower
body movements.

We also collected subjective feedback from the participants. All
twelve participants rated HybridTrak to be the best of the three
systems. P1, P2, P8, P9, and P11 found the poses in the HybridTrak
condition to be clear and natural. P2, P10, and P11 found the tran-
sitions between poses in this condition to be sometimes jerky, es-
pecially when transitioning between crawling and sitting on the
ground (P2). For the KinectToVR condition, P5, P6, P7, P10, and P11

Egocentric camera view External webcam view

Areas with 
less occlusion

Areas with 
more occlusion

Figure 10: Captured images from an egocentric camera and
an external webcam. It shows that the user’s lower body is
likely to be occluded with an egocentric camera and not with
the external webcam, while the opposite is true for the user’s
upper-body.

found the leg orientations in the KinectToVR condition to be inac-
curate, which is a common complaint about Kinect body tracking.
For the upper-body only tracking condition, P4-9 and P12 found
the postures to be less distinguishable. P5 reported that they had to
guess the lower body posture from the upper body posture.

5 DISCUSSION
In this section, we discuss how HybridTrak solves the occlusion
problem, the comparison between HybridTrak and other 3D pose
tracking algorithms, applications of our algorithm, avenues for
future work, and the limitations of HybridTrak.

5.1 Occlusions and benefits of a hybrid tracking
setup

Occlusions are a common source of errors for most pose-estimation
algorithms [7]. HybridTrak is designed to avoid occlusions. There
are two common types of occlusion in pose estimation: occlusion
between body parts and occlusion due to external objects. The latter
is not an issue for VR, since VR requires the tracking space to be
clear of objects to keep the user safe.

For occlusion between body parts, the hybrid tracking architec-
ture of HybridTrak cleverly avoids most of the problems with a
minimal setup overhead. As shown in Figure 10, the user’s lower
body is likely occluded in the egocentric camera (including mul-
tiple fisheye cameras) and not occluded in the external webcam,
while the opposite is true for the user’s upper body. By combining
egocentric upper-body pose detection with a lower-body pose from
an external camera, HybridTrak achieves full-body tracking with a
simple and portable setup.

5.2 Comparison between HybridTrak and other
3D pose tracking algorithms

We have demonstrated that: 1) HybridTrak can produce more accu-
rate 3D poses than a naïve algorithm using RGBD input (Section 4.1);
and 2) HybridTrak’s generated poses are perceived by users to be
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Figure 11: Generated pose comparison between HybridTrak and KinectToVR. Some poses work well in both systems, some
work only in HybridTrak, and some work in neither system. The three rows are not captured at the same time, so there may be
some differences in the exact position of the arms and legs. In the 7th pose, the user is facing backward while the legs in the
KinectToVR solution are facing forward. In the 8th pose, the user’s right leg is bending forward while his left leg is bending
towards the right.

more accurate and more natural than those from an RGBD camera-
based solution, KinectToVR (Section 4.3). Since many VR users are
already using KinectToVR for body tracking, this demonstrates that
HybridTrak can reach a level of performance that is beneficial to
many current VR users using only a single webcam. However, this
does not mean HybridTrak is incompatible with the RGBD camera.
Future work can integrate the depth info from such a camera into
the detected 2D poses and feed the combined information into a
similar pose conversion neural network as that used by HybridTrak
to potentially achieve even more accurate 3D poses in VR.

Specifically, when comparing with KinectToVR, we found that
HybridTrak can accurately reproduce more poses than KinectToVR,
especially when the user’s feet are facing sideways (Figure 11). We
think this is because the Kinect is mostly using depth to extract the
user’s skeleton, but feet provide little contrast in terms of depth. In
contrast, HybridTrak uses RGB information to extract the user’s
feet positions and direction, which is more reliable for determining
the position of the feet.

As shown in Figure 11 even HybridTrak does not work well with
some poses. However, as HybridTrak only needs 2D key points
as input and 3D key points as output for training data, it is pos-
sible to build a synthetic dataset with these postures to enhance
the accuracy of HybridTrak. Furthermore, as modern VR apps al-
ready contain many character animations, we imagine future VR
apps can ship with specialized HybridTrak models. These models
can be trained with the included application-specific animations,
so that HybridTrak can accurately produce the postures that are

common in these apps. This is a benefit specific to HybridTrak’s
current architecture. Compared to an alternative system that di-
rectly generates 3D poses from RGB images, we can harvest the
larger annotated image datasets with 2D poses to accommodate dif-
ferent lighting conditions of the users and synthesize arbitrary 3D
pose-only datasets to improve the recognition results for specific
poses.

5.3 Applications
HybridTrak offers an easy-to-access solution for everyday users
to achieve full-body tracking. With HybridTrak, users can have a
better experience in social apps now that the full-body posture is
accurately presented. It can also provide full immersion for sports
such as soccer or dodge ball. HybridTrak can even be used to fa-
cilitate the fundamental interactions in VR, such as locomotion.
Some locomotion methods, such as Seven League Boots [13], can
provide users a better experience when the locomotion method can
leverage accurate foot movements.

5.4 Future work
Like any other system using machine learning, HybridTrak would
benefit from more training data. A unique benefit of HybridTrak
is that the model’s input and output can be easily collected from
an RGB camera and a commercial full-body tracking system such
as HTC Vive Trackers [10]. So an interesting future project would
be to crowdsource training data from people who already have a
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webcam and a full-body tracking system, which is popular in online
VR platforms (6 out of 8 of the participants in our user study have
access to a full-body tracking system regularly).

5.5 Limitations
HybridTrak in its current state requires one dedicated graphics card
for the tracking system. Note that an accurate 2D pose estimator,
such as pose_resnet, requires most of the computing resources in
the entire HybridTrak system; the pose conversion neural network
we introduce in HybridTrak only requires minimal resources. We
tested a variant of HybridTrak that runs the 2D pose detection on
an iPhone and streams the result back to a VR-capable machine.
This system runs the pose conversion network on the VR machine.
While the pose conversion network can run at 30fps, the 2D pose de-
tector is limited to 11fps on an iPhone 11. With a mobile-optimized
2D pose detector and more capable hardware, future all-in-one
VR headsets like Oculus Quest would be able to achieve smooth
full-body tracking with an extra smartphone on a stand running
HybridTrak.

We compared the performance of our system with VNect [26] in
Section 4.2. We used VNect as a baseline because it is comparable
with HybridTrak in terms of computing resources required and
inference latency. Most other pose estimation models either cannot
estimate 3D poses with a single camera (e.g., OpenPose [5]), or
demonstrate live-inferencing capability (e.g., SPIN [21]). Notably,
VIBE [20] can run at 30fps on a modern graphics card and has better
MPJPE but worse PCK and AUC scores than VNect. We did not
compare with VIBE in this paper, but it could be another alternative
RGB pose tracking algorithm similar to VNect.

The pose conversion neural network in HybridTrak is trained
with the Human3.6m dataset, which has a limited set of body skele-
ton sizes. A person with a very large or small skeleton may experi-
ence a higher error rate than other people. A possible solution is to
apply a random scaling factor to the body skeleton in the training
data, and scale the 3D ground truth and the detected 2D pose from
the RGB camera accordingly.

6 CONCLUSION
HybridTrak shows a promising future where every VR user can
have their full-body represented in the virtual world, by adding
just a single off-the-shelf webcam. By making this technology more
accurate and versatile, future VR systems will be able to provide a
more immersive and interactive environment.
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Figure 12: Transform between the camera and VR coor-
dinates: 𝑇Camera is the camera space, 𝑇 ′

Camera is the modi-
fied camera space, finally, 𝑇VR is the VR space. HybridTrak-
transform uses a neural network to generate 3D coordinate
poses in the 𝑇 ′

Camera modified camera space, and then uses
LSF to match the 3D poses to the 𝑇VR space.
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Figure 13: HybridTrak-transform uses a least-squares fitting
to compute a rotation and scaling transform to align esti-
mated 3D head and hand poses from the webcam with the
head and hands positions from the VR tracking data. The
original trace is on top, and the transformed trace is on the
bottom. The transformed traces from the webcam are well
aligned with the VR tracking traces.

A HYBRIDTRAK-TRANSFORM
IMPLEMENTATION

We first use a neural network to process the 2D pose data from
the webcam and generate six tracking points with positions and
orientations. In the second step, we use “least-squares fitting”(LSF)
to match the head and hands tracking points to the data from VR
and produce a transformation between the camera space and the
real-world space. In the end, we can apply that transformation to
the predicted waist and feet poses to produce data for VR full-body
tracking.

For the first step, we adopt a temporal convolutional neural net-
work (CNN) similar to VideoPose3D [29]. We modify the network
so that it outputs six tracking points with seven outputs, represent-
ing the position in three dimensions and the rotation in quaternion.
Similar to regular HybridTrak, the network also accepts normalized
2D poses as input.

HybridTrak-transform does not require the camera extrinsic ma-
trix to be supplied to the system so as to ensure a calibration-free
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experience. The extrinsic matrix includes the camera’s position (x,
y, z) and orientation information (row, pitch, yaw). This informa-
tion is typically used to transform the estimated 3D pose in the
regular camera space to the VR space. To handle the position offset,
we train the neural network to predict joint positions relative to
the head. As we already know the head position, we can easily
add the offset to the model to handle the position offset. To handle
the camera rotation, we have to rely on both the neural network
and our LSF algorithm. As the neural network is usually good at
learning body geometry, and earth’s gravity ensures that the users’
center of gravity lies within their feet most of the time, we let the
neural network directly produce the 3D body coordinates without
pitch and yaw (see the modified camera space in Figure 12). With
those coordinates, we only have to worry about the yaw differences
between the modified camera space and the VR space.

Both the neural network and the VR tracking provide us with
the user’s hand position, so we can use this information to figure

out the correct rotation between the two spaces. In other words, we
need to generate a rotation to minimize the distance between the
user’s hand positions predicted by the neural network and the hand
positions from the VR tracking system. In practice, we also noticed
that the neural network may have some errors in estimating the
size of the skeleton of the user, causing the user’s leg positions to
be further away or closer than where they should be. So we also
take this chance to estimate a scale to re-scale the skeleton on the
x-y plane. We generated this scaling and rotation transform using
the least-squares fitting algorithm, an example result is shown in
Figure 13.

So, with the appropriate rotation and scale transform from LSF,
we can apply the transform to the result of the neural network and
add the head position to all relative joints positions to get accurate
positions and orientations in VR space.
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