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Abstract 
Multimodal interactions are more flexible, efficient, and adaptable 
than graphical interactions, allowing users to execute commands 
beyond simply tapping GUI buttons. However, the flexibility of 
multimodal commands makes it hard for designers to prototype 
and provide design specifications for developers. It is also hard for 
developers to anticipate what actions users may want. We present 
GenieWizard, a tool to aid developers in discovering potential fea-
tures to implement in multimodal interfaces. GenieWizard supports 
user-desired command discovery early in the implementation pro-
cess, streamlining the development process. GenieWizard uses an 
LLM to generate potential user interactions and parse these interac-
tions into a form that can be used to discover the missing features 
for developers. Our evaluations showed that GenieWizard can reli-
ably simulate user interactions and identify missing features. Also, 
in a study (N = 12), we demonstrated that developers using Ge-
nieWizard can identify and implement 42% of the missing features 
of multimodal apps compared to only 10% without GenieWizard. 

CCS Concepts 
• Human-centered computing → Interaction paradigms; Sys-
tems and tools for interaction design; Natural language interfaces; • 
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Software and its engineering → Software creation and manage-
ment; • Computing methodologies → Natural language process-
ing. 
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1 Introduction 
Multimodal interactions1 allow users to engage with computer 
systems using a combination of multiple input modalities, such 
as touch and voice. These interactions have been proven to offer 
more flexibility, efficiency, and adaptability for various users and 
tasks [64]. Unlike touch-only interactions, where users are limited 
to actions displayed on a graphical user interface (GUI), multimodal 
interactions allow users to express their intentions using a combi-
nation of modalities. Our prior research has shown that even apps 
developed with a state-of-the-art multimodal framework may fail 
to support 41% of the desired commands from real users [68]. This 
result is caused by users voicing any command that comes to mind, 

1Specifically, this paper targets multimodal apps that use deictic gesture + speech 
interactions. This is a common category of multimodal applications proposed by Oviatt 
[51]. 
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@GenieClass("A room item")
export class Room extends 
DataClass {
    @GenieKey
    public id: string;
    @GenieProperty("the name of 
the room")
    public name: string;
    @GenieFunction("Show preview 
of booking of the room")
    bookRoom({startDate, 
endDate}) {
        …
    }
}

Code Skeleton Simulated user commands API Level Feature SuggestionsGUI Design 

“Show me hotels less 
than $100.” 

“Can I request for 
some discount?” 

“What are interesting 
places to visit nearby?” 

Hotel.price 

InterestingPlaces{} 

Booking.requestDiscount() 
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Spectulation
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 search
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Figure 1: GenieWizard helps developers discover commonly expected features in multimodal apps: Based on the GUI design 
provided by the designers, multimodal app developers write an initial code skeleton. GenieWizard can help developers by 
suggesting features that need to be implemented to provide a good initial app experience. GenieWizard achieves this by 
simulating user commands using a large-language model(LLM), speculating about missing features using a zero-shot parser 
and abstract interpretation, and providing actionable API-level feature suggestions to developers. 

not being limited to what is displayed on the GUI. As such, it is 
significantly more difficult for multimodal apps to provide a smooth 
user experience without interruptions from unsupported command 
errors. If an app cannot handle the commands a user issues, it may 
lead to frustration and discourage natural exploration [43]. 

Feature discovery for GUI apps can be supported by user testing 
using design and prototyping tools like Figma without implement-
ing the full system and UI. However, the same cannot be done for 
multimodal UIs due to the complexity of implementing multimodal 
interactions. This paper shows how we can support feature discov-
ery for multimodal apps without implementing a full prototype. 

1.1 Feature Discovery for GUI and Multimodal 
Apps 

The Software Development Life Cycle (SDLC) [4] has several 
variations of workflows, such as the waterfall model [55], spiral 
model [9], incremental model [54], and agile methods [33]. These 
models include common stages, including design, implementation, 
and testing. Designers can address most GUI usability issues at the 
design stage using GUI design prototypes. GUI design tools such 
as Figma support user testing with an interface prototype. As users 
interact with the prototype, a prepared screen representing the 
GUI design will appear, allowing the user to test the app without 
needing a code-based implementation. 

Consider the development of a hotel search application, as shown 
in Figure 1. Designers can usually make a clickable GUI prototype 
with little to no code. From user feedback during usability testing, 
they can discover necessary GUI improvements like adding a button 
(e.g., a search button) or a label (e.g., a price label). The missing cor-
responding functions, such as a search function hotel.search() 
and a price property hotel.price can be captured in a design spec-
ification, such as a Figma document, which is then used to inform 
the implementation. 

Multimodal commands are inherently richer and more flexible. 
In this hotel search example, the user may ask “Show me hotels 
for less than $100”, or “Can I request a discount for this hotel” 
while simultaneously tapping on a hotel entry. These are both rea-
sonable commands to use when searching for a hotel, but their 
implementation is nontrivial. Multimodal apps can better address 
the exponentially many combinations of features conveyed in mul-
timodal commands through an LLM-based neural semantic parser. 
For example, ReactGenie [68] uses such a parser to translate natural 
language into an executable domain-specific language (DSL) that 
uses compositional constructs to connect implemented functions 
and the user’s current interaction (e.g., voice and touch) to execute 
the user’s command. In contrast to what is needed to support the 
more limited functionality of GUI applications, multimodal applica-
tions necessitate more extensive and more expensive user research 
during the initial development phase. This is because developers 
need a set of common user commands that align with user expec-
tations to plan out the functions to implement. So, discovering 
commonly used features early in the development process is even 
more crucial for multimodal apps. 

With GUI applications, features2 are closely tied to interface 
elements, enabling developers to easily link interface operations 
with their corresponding implementations. However, the features 
in multimodal apps can be nontrivial to conceptualize, meaning 
that without having a deep understanding of how the app will 
be implemented, developers cannot anticipate whether a desired 
multimodal command can be supported and which group of com-
mands can be supported through the same underlying features. For 
example, a hotel search app probably already has logic dealing with 
hotel pricing information in its database. If the user says, “Show 
me hotels for less than $100,” the semantic parser can automatically 
translate the command into code that filters hotels based on pricing 

2Here, “features” means lower-level programming features, i.e., specific classes, prop-
erties, and functions in an app. 



GenieWizard: Multimodal App Feature Discovery with Large Language Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

information. In contrast, a command such as “What are interesting 
places to visit nearby?” likely requires more code changes. For ex-
ample, this might require creating a new attractions class, and 
the semantic parser would produce a query involving the hotel and 
nearby attractions. 

In summary, for multimodal apps, it is both more challeng-
ing and important to discover features without a prototype 
implementation. Multimodal interactions present two major 
challenges to the development workflow: 

(1) How can we prototype multimodal interactions without ex-
tensive implementations? 

(2) How can missing features be conveyed in a way that is ac-
tionable for developers? 

1.2 Introduction to GenieWizard 
We present GenieWizard, a developer tool (see Figure 4 for the user 
interface) that aids developers in discovering the features needed 
to support common multimodal interactions in the early stages of 
implementation. GenieWizard provides an IDE that allows devel-
opers to code as usual, while also providing feature suggestions 
and an interface to track their implementation progress towards 
these features. To use GenieWizard, developers only need to provide 
early-stage code skeletons (i.e., class/property/function definitions). 
They do not need to provide full implementations, and there are no 
GUI designs required. Through an automated feature suggestion 
pipeline, GenieWizard can suggest potential features to implement 
potential user commands. Figure 2 provides an overview of Ge-
nieWizard. 

1.2.1 Feature discovery before prototyping. Our approach is to 
leverage the generative power of large language models (LLMs) 
to simulate user testing with a simulated app. GenieWizard first 
derives an app description from the code skeleton. It uses an LLM 
to generate personas of potential users based on the app description 
and randomly sampled demographic data. Then, it uses an LLM 
to simulate commands from each persona interacting with an app 
instructed to behave according to the same app description. 

1.2.2 Suggesting missing features to developers. GenieWizard’s 
next step is to suggest features for the app implementation. Note 
that, as stated in Section 1.1, multimodal features are nontrivial 
to deduce. We cannot directly tell what features are missing from 
generated user interactions without first parsing them into actual 
commands. Therefore, the suggestions need to be at the API level 
to be effective. We discuss more about this in Section 6.1. 

We leverage the hallucination of LLMs as generative power to 
design the missing features. An LLM-based neural semantic parser 
is instructed to use a set of APIs given by developers. What hap-
pens if a user command cannot be implemented with any of the 
given APIs? The parser will hallucinate, referring to classes, prop-
erties, and functions that do not exist. In production, we need to 
suppress the hallucinations and force the parser to recognize that 
the requested command is not yet supported. 

Our novel design turns this LLM bug into a feature by explicitly 
encouraging the hallucination behavior when the app cannot fulfill 
the interaction required by the simulated user. This is achieved with 
a carefully crafted prompt we supply to the LLM. Next, GenieWizard 

scans the generated API calls for missing classes, properties, and 
functions, clusters similar ones, and provides a concrete and concise 
list of suggested features (i.e., classes, properties, and functions) for 
developers to implement. 

1.2.3 Workflow Integration of GenieWizard. We imagine GenieWiz-
ard will be used in the initial implementation stage of a multimodal 
app’s development cycle (see Figure 1). Designers will provide a 
full GUI design and list the app’s target use cases. Developers first 
design an initial app architecture—especially the state code skele-
ton—based on the GUI design and specified use cases. They then 
provide this initial code (along with the use case details as part of 
the app description) to GenieWizard, which helps refine the archi-
tecture and implementation until the app can support the predicted 
common user requests. The goal is that the first version of the new 
multimodal app will be much more functional (less unsupported 
commands) for end-users with the help of GenieWizard. 

1.2.4 Contributions. Our main contributions include: 

• A novel system, GenieWizard, that helps developers discover 
a rich and useful feature set for a multimodal application, 
automatically, early in the implementation cycle, through 
LLM-based user/app interaction simulations. 

• A technical approach incorporating a zero-shot parser and 
a dry run utility that can understand simulated multimodal 
commands and translate them into missing properties, func-
tions, and classes. 

• An evaluation of GenieWizard showed that generated user 
commands cover, on average, 71% of the desired user com-
mands, the zero-shot parser can match the performance of 
the few-shot parser of the prior work, and developers using 
the GenieWizard plugin can implement more of the desired 
commands (42%) than using a baseline tool (10%). 

2 Related Work 
Our work builds upon and extends many prior research projects. 
The topics include: UI design and testing tools, UI feedback tools 
with AI, developer tools with AI, multimodal development frame-
works, and multimodal interactions frameworks with AI. In this 
section, we will review key contributions to these topics and show 
how our approach differs. 

2.1 UI Design and Testing 
The evaluation of user experience is an important part of software 
development [32]. The feedback obtained from testing with users 
can be utilized for program and interface improvements. Nielsen 
and Molich [48] first proposed seven factors, including error preven-
tion, user control, and freedom, among others, as usability heuristics 
for designers and developers to test. Designers and developers can 
use analytical evaluation techniques to collect user feedback and 
examine the user experience. Thinking aloud [40] requires users to 
make spoken comments while accomplishing specific interaction 
tasks. Keystroke-level analysis [17] predicts how long it will take 
an expert user to accomplish a routine task without errors using 
an interactive computer system to help evaluate user experience. 
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// A food item 
class FoodItem {
  string name;
  float price;
  // the menu section of 
the food
  MenuSection menuSection;
  static FoodItem 
GetFoodItem(name: string);
  static FoodItem[] All();
  static FoodItem 
Current();
  static FoodItem[] 
AllCurrent(); 
} 

This app is a digital menu designed 
for dinning in an Italian restaurant. 

Landon Holt, a 22-year-old male 
from Johnson County, Missouri, is a 
personal financial advisor. … 

Landon wants to use the digital 
menu app in an Italian restaurant to 
enhance his dining experience. He 
is looking forward to exploring the 
menu options and discovering new 
dishes. Landon's task is to browse 
through the digital menu, select his 
preferred dishes, and customize 
them according to his dietary 
preferences. … 

… 
user: What are the ingredients in the 
Penne Arrabiata? 
app: The Penne Arrabiata is a spicy 
pasta dish made with penne pasta, 
tomato sauce, garlic, chili flakes, 
and topped with Parmesan cheese. 
It has a kick of heat and is perfect 
for spice lovers. Would you like to 
add it to your order? 
… 
user: Add extra cheese to the 
Vegetarian pizza. 

FoodItem.GetFoodItem( 
name: "Penne Arrabiata" 
).getIngredients() 

FoodItem.GetFoodItem( 
name: "Vegetarian pizza" 
).getFoodItems().matching( 
field: .name, value: "extra 
cheese").add(); 

FoodItem.getIngredients() 

FoodItem.getFoodItems() 

FoodItem.getIngredients()  
//  Returns a list of 
ingredients for a specific 
food item. 

FoodItem.addToppings()  
//  Adds toppings to a 
specific food item. 

Figure 2: GenieWizard Suggestion Generation Pipeline: GenieWizard’s suggestion generation pipeline starts from developer-
provided code signatures and generates feature suggestions through an automated pipeline. It involves three general stages: 
simulating user commands (purple, left four), speculating on missing features (yellow, center two), and suggesting features to 
implement (blue, right one). 

Other methods, such as long-term diary research [10], daily re-
construction methods [35], and the experience sampling method 
(ESM) [46] are used to assess the usability of software during use. 

However, most of these methods generally require users to ex-
perience a functioning application, which requires much of the 
implementation to be finished before obtaining user feedback. Con-
sidering the perspectives of risk management and development 
efficiency [18], prototyping can help developers conduct functional 
tests of various industrial product outputs during the development 
stage [16]. Budde et al. [14] classify prototypes according to the 
manner of their construction. Different prototyping methods al-
low developers to test user interfaces (horizontal prototypes) or 
individual features (vertical prototypes) without completing the 
entire program. The MENULAY [15] and the Dynamic Interface 
Creation Environment [56, 57] were two of the earliest UI proto-
typing tools that allowed developers to test the layout of interface 
elements, such as the placement of text boxes and buttons. Floyd 
[25] and Naumann and Jenkins [47] all believe that prototyping 
starts with determining requirements and features, followed by 
implementation and testing. 

Prior research [6, 7, 19, 25, 31, 44] generally identified three 
categories of prototyping models: Exploratory, Experimental, and 
Evolutionary Prototyping, tailored to different stages of application 
development. These models perform well for GUI applications, but 
the functional requirements brought by multimodal user input are 
likely to go beyond the visual elements of the interface itself. Faced 
with the uncertainty of requirements in multimodal applications, 
these models may struggle to help developers complete the pro-
totyping of multimodal applications. Bourguet [11] attempted to 
use a Finite State Machine (FSM) to build prototypes of multimodal 
applications, but the multimodal inputs, such as voice input and 
clicks, also need to be anticipated by developers in advance, which 
is difficult given the flexible nature of multimodal interactions. 

Therefore, we need a method to gather possible user input, un-
derstand what features are required, and present this information 
in a concise way to developers. Also, all of the above should be 
performed as early as possible in the development process. Ge-
nieWizard simulates the user input-gathering process by using an 

LLM-powered pipeline that only requires a skeleton of the state 
code 3 , which can be created early in the implementation process 
before any UI code or a functioning implementation. GenieWizard 
then analyzes the required features using its zero-shot parser and 
dry run utilities to convert simulated user inputs to a list of required 
code elements. Finally, GenieWizard provides concise feedback for 
developers. 

2.2 UI Development Feedback Generation with 
AI 

GenieWizard suggests features for multimodal apps to improve the 
user experience. There has also been some recent work using large 
language models for testing GUI design and implementation and 
generating feedback. Liu et al. [42] used LLMs for zero-shot human-
like interaction generation for detecting crashing bugs triggered 
by GUI actions. Duan et al. [23] automated heuristic evaluation of 
UI designs by feeding an LLM with prompts containing the design 
guidelines and the UI representation. 

Prior work has yet to explore providing feedback on multimodal 
app development, and generating feedback for such development is 
more challenging than generating feedback for GUI development. 
First, no design guidelines are currently available for conducting 
heuristic evaluations on multimodal apps. Second, the flexibility of 
user actions possible in multimodal apps makes the potential set 
of user interactions that should be supported significantly larger 
than those in GUI apps. GenieWizard tackles these challenges by 
simulating user actions to bootstrap the feedback process when 
heuristic evaluation is not feasible. It also leverages persona genera-
tion techniques to cover a wide range of user types in the simulated 
actions. This allows GenieWizard to generate possible user com-
mand suggestions based only on the skeleton of the app’s state code 
before developers write functioning implementations. 

3State code, in the context of GUI development, refers to the part of the application 
that manages the data and the logic that determines the state of the user interface. 
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2.3 AI-assisted Developer Tools 
The past decade has seen a large body of literature about building de-
veloper tools using AI [29]. Below, we summarize major AI-assisted 
developer tools, synthesize the evolution of AI techniques used to 
build these tools, and highlight the novel techniques proposed by 
this work for integrating LLMs into developer tools. 

Earlier work on developer tools used traditional machine learn-
ing techniques, including supervised and unsupervised methods. 
For example, Lal and Pahwa [38] used Decision Trees and Support 
Vector Machine (SVM) models to predict if certain code contained 
bugs, helping with code review. Nucci et al. [49] used source code 
metrics, historical data, and manual annotations to train Naive 
Bayes and J48 probabilistic models to identify bad coding practices. 
Bader et al. [5] used documented software bug fixes from code-
bases to power a hierarchal clustering algorithm that identifies 
bugs in programs and suggests possible bug fixes in a ranked order 
based on probability. More recent research applies deep-learning-
based approaches to building developer tools. These approaches 
not only allow for better performance in detection tasks but also 
further enable more novel generation tasks, such as UI generation 
and documentation generation. Generative Adversarial Networks 
(GANs) have been researched to improve and automate the process 
of designing graphical layouts [41, 62]. LayoutTransformer [28] 
and GUILGET [63] are self-attention-based transformer models 
that generate and complete design and UI layouts. Jing et al. [34] 
uses variational autoencoders (VAE) to generate layouts for various 
product listing pages encountered in mobile shopping applications. 
Khomh et al. [36] presents a deep neural network that analyzes 
the structural information of Java methods for code comments 
generation. 

Pre-trained LLMs have the potential to empower more innova-
tive AI-assisted developer tools. Given their code analysis ability 
and flexible text-based interaction paradigms that support both 
human languages and programming languages, off-the-shelf LLM-
powered chatbots are used by developers to comprehend, write, 
and debug code. Some researchers have further developed LLM-
powered tools that support code understanding [45], the informa-
tion searching and foraging process [12], code generation based 
on conversational interactions [58], translating natural language 
commands to domain-specific language code [68], as well as soft-
ware testing tasks [67] such as unit test generation [39], test input 
generation [69], and program repair [53]. In addition, systems have 
been developed to assist writers in providing feedback during their 
writing process [8, 20]. 

GenieWizard has similarities with other LLM-powered software 
testing tools in that it also helps developers identify and fix issues 
in the code. At the same time, the novel pipeline it proposes differ-
entiates it from other LLM-powered developer tools that primar-
ily leverage the model’s code knowledge. Combining the model’s 
commonsense reasoning and code knowledge automates the en-
tire process, from simulating user behaviors to suggesting missing 
function code signatures for programming multimodal interactions. 
We envision this pipeline will enable a new paradigm of AI-based 
developer tools, which we discuss later in this paper. 

2.4 Multimodal App Development Frameworks 
Multimodal app development is a challenging task. Before LLMs 
became widely accessible, researchers had created development 
frameworks to facilitate the implementation of specific voice com-
mands on top of a GUI. Sarmah et al. [60] developed a tool for adding 
the voice input modality to existing web apps without requiring 
significant NLP expertise. However, it only supports template-based 
matching of multimodal commands (e.g., “add <song name> to the 
playlist”), and each individual command needs to be added sepa-
rately. This not only increases the development cost, but also does 
not fully realize the potential of achieving flexibility, efficiency, and 
adaptability with multimodal interactions. 

With LLMs, researchers have proposed novel programming 
frameworks to streamline the implementation of multimodal apps 
that can generalize from a small number of examples to a large set 
of commands. Wang et al. [66] explore a generalizable approach to 
adapt an LLM to mobile UIs to support conversational interactions 
with the UIs. In our prior work, we [68] proposed a pipeline to 
translate human voice commands to DSL code that can compose 
the app functions exposed by the developers to support flexible 
user intentions. 

While this recent work has addressed the barrier to implement-
ing a large set of multimodal commands, another significant issue 
remains unsolved: it is difficult to determine a comprehensive set of 
functions to implement for supporting the multimodal commands 
in the code. GenieWizard tackles this problem by analyzing an 
early version of the code to infer the required functions that can 
cover common interactions for varied types of users. It also helps 
developers prioritize suggested features based on their relevance 
and potential impact on the user experience. This feature ranking is 
crucial as it guides developers on which functionality to implement 
first, optimizing the development process and resource allocation. 

2.5 Multimodal Interactions with AI Models 
While apps such as ChatGPT [50] or Google Gemini [26] support 
multimodal input and output (typically images and text), they work 
best for general knowledge questions. People have also tried to 
make an AI model that allows a user to give voice commands 
and emulates user clicks/keystrokes as input to a traditional GUI 
app [2, 66]. While these solutions are easier to code, they suffer 
from mistakes and the inability to integrate actions on different 
screens [66]. Another solution is to allow an LLM to generate in-
terfaces on the fly [65] according to the user’s command. However, 
it is harder to make an app conform to a consistent look and feel 
and this is also more prone to LLM generation errors. Therefore, 
GenieWizard is based on a more traditional software development 
process to help developers implement more features to deliver a 
more usable first iteration of an application that has reliable features 
and a consistent look and feel. 

3 GenieWizard System Design 
The goal of GenieWizard is to help developers reduce the “unsup-
ported” errors in their multimodal apps by suggesting features to 
implement. In a simplified software engineering development life-
cycle [3, 59], designers first create prototypes of an app to verify 
its features and make improvements. Designers then make design 
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specifications from that process and present them to developers. 
Developers implement logic (state code) that supports all the fea-
tures and then implement a UI (UI code) that renders information 
present in the logic in a way that conforms to the design specs. 
Finally, the app can be tested by end-users through app user testing. 

However, with the introduction of multimodal interactions, pro-
totyping is much harder for designers. For GUI apps, there are many 
tools to help designers make partially-functioning prototypes that 
will respond to a user’s clicks for testing. Additionally, designers 
have less ambiguous representations of the design specifications, 
usually via a graphical storyboard. When developers implement 
the app to behave exactly like the graphical storyboard, users have 
a higher chance of having the user experience intended by the 
designers. However, to create design specifications for multimodal 
apps, designers must carry out laborious Wizard-of-Oz studies [37] 
to simulate the system to respond to various multimodal commands 
and learn the users’ desired commands. This is due to the fact that 
the GUI interaction space is usually limited, i.e., if there are five 
buttons on a screen, there are only five possible interactions that 
must be pre-programmed. Multimodal interaction involves not only 
a large number of actions available on almost every screen but also 
the exponential number of possible combinations of these actions 
and references to objects on the screen. Developers must also un-
derstand the mapping between user commands and the required 
properties, functions, and classes to implement them. 

In the following, we first give an overview of the multimodal 
interaction framework ReactGenie (which GenieWizard is based on) 
and then introduce the reader to the multimodal feature discovery 
problem GenieWizard is trying to solve. This is followed by an 
overview of the GenieWizard system and the details of the three 
key stages in the GenieWizard pipeline. 

3.1 Overview of the ReactGenie Framework 
To familiarize the readers with multimodal apps, we first describe 
the ReactGenie framework [68], a state-of-the-art multimodal app 
framework that supports arbitrary combinations of GUI actions 
and API calls via voice commands. Our GenieWizard prototype 
is developed on top of ReactGenie. ReactGenie streamlines the 
creation of multimodal mobile apps by allowing developers to focus 
on implementing the app features and the GUI without having to 
handle each possible multimodal intention manually. 

3.1.1 The developer interface. As shown in Figure 3, the devel-
oper simply defines the state code, which contains classes with 
properties and functions that define the app’s features. Only prop-
erties annotated with @GenieProperty and functions annotated 
with @GenieFunction will be exposed to the multimodal runtime. 
Hence, developers can prevent the internal helper functions and 
properties from being exposed to the user by simply not annotat-
ing them, e.g., reserveRoom() and imageUrl. The developer then 
defines the UI code, which can be typical React4 code that renders 
the GUI based on the state code. 

The developer also needs to provide a set of few-shot examples 
of how natural language commands are to be translated into correct 
ReactGenieDSL code from user commands. For example, as shown 

4https://react.dev/ 

in Examples in Figure 3, the sentence “I want to book this room till 
the end of the week” is represented in ReactGenieDSL as 

Room.Current().bookRoom(startDate: DateTime. 
today(), endDate: DateTime.today().setDayOf 
TheWeek(day: DateTime.Sunday)) 

ReactGenieDSL is a DSL designed to support the composition of 
GUI actions and developer-provided functions in a syntax that is 
easy to translate from natural language. 

Notice that in this example, a special function that is not required 
to be provided by the developer is the Room.Current() function. 
This function supports the user’s multimodal deictic touch gesture. 
ReactGenie provides this function by understanding what object in 
memory is mapped to the user’s click point (x,y) using the devel-
oper’s UI code. This function then returns the same object under 
the user’s touch point. In this way, the user can refer to the object 
that they are tapping in their multimodal commands. 

3.1.2 ReactGenie Framework. ReactGenie uses the developer-
supplied examples of translations from English to ReactGenieDSL, 
along with the extracted state code function signatures, to create an 
LLM-based semantic parser that turns user utterances into React-
GenieDSL code. When a user issues a command, ReactGenie uses 
the semantic parser to turn the command into ReactGenieDSL code. 
The ReactGenieDSL interpreter executes the command within the 
context of the developer-provided state code. The execution will 
automatically update the state and trigger a re-rendering of the 
relevant GUI. ReactGenie further analyzes the execution result and, 
depending on the result, optionally composes a GUI interface using 
developer-provided UI code to display the result to the user. Parallel 
to the GUI rendering, ReactGenie also generates a text response 
using human-readable descriptions of the execution result. 

3.2 The Multimodal Feature Discovery Problem 
The problem GenieWizard attempts to address is the following: 
Given a prototype of a multimodal app, propose a set of new 
programming features to implement so that typical end-user 
requests can be satisfied. 

To illustrate the complexity of this problem, let us consider the 
example of a functional food-ordering GUI app. Suppose the app 
provides information about each food item, including ingredients, 
on an item detail page. An app implementing the GUI may simply 
have a text field called Food.description. A user would like to 
avoid peanuts because of allergies, so they ask, “Show me all the 
food that doesn’t contain peanuts.” To handle this request, we need 
to add a Food.ingredients field and translate the command to 
Food.All().ingredients.notContains(item: "peanut"). 

In a traditional development lifecycle, such a problem might 
only be detected at the software usability testing phase. Our prior 
work [68] showed that a multimodal app developed with the Re-
actGenie framework still leaves 41% of the commands desired by 
users unsupported by the study participants’ implementations. As 
demonstrated by [43], the portion of unsupported commands af-
fects people’s willingness to use the system and makes early testing 
of multimodal systems in the wild infeasible. 

https://react.dev/
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@GenieClass("A room item") 
export class Room extends DataClass { 

@GenieKey 
public id: string; 
@GenieProperty("the name of the room") 
public name: string; 
public imageUrl: string; 
@GenieProperty("the hotel that that room belongs to") 
public hotel: Hotel; 
@GenieProperty("the price of the room") 
public price: Decimal; 
@GenieProperty("0-1, 1 being the most popular") 
public popularity: float; 

constructor({id, name, imageUrl, price, popularity}: …
    } 

reserveRoom({startDate, endDate}: {startDate: DateTime, endDate: 
DateTime}): boolean { 

…
    } 

@GenieFunction("check if this room is available for a specific period") 
isAvailable({startDate, endDate}: {startDate: DateTime, endDate: 

DateTime}): boolean { 
…

    } 

@GenieFunction("Show preview of booking of the room") 
bookRoom({startDate, endDate}: {startDate?: DateTime, endDate?: 

DateTime}): Booking {
        …
    } 

static Examples = [
        { 

"user": "I want to book this room till the end of the week", 
"parsed": "Room.Current().bookRoom(startDate: DateTime.today(), 

endDate:DateTime.today().setDayOfTheWeek(day: DateTime.Sunday))”,
        }
    ]; 
} 

const RoomItemViewImpl = (obj: Room) => { 
return (

    <Pressable 
style={common.cardContainer} 
onPress={() => { 
const orderItem = Booking.CreateBooking({ 
room: roomItem}); 

AppNavigator.push("BookRoom", orderItem);
      }}
    >
      <View style={common.card}>
        <Image source={{ uri: roomItem.imageUrl }} style={common.card} />
      </View>
      <View style={common.content}>
        <View style={common.spacebetween}>
          <Text style={common.title}>{roomItem.name}</Text>
          <Text style={common.title}>{roomItem.price.toString()}</Text>
        </View>
      </View>
    </Pressable>
  ); 
}; 

export const RoomItemView = GenieClassInterface("Room",
  (roomItem) => `${roomItem.name} Room`)(RoomItemViewImpl); 

State Code 

UI Code 
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Figure 3: ReactGenie [68] System Overview: GenieWizard is built upon the state-of-the-art multimodal app implementation 
framework ReactGenie. ReactGenie offers a basis for implementing multimodal apps when the required functions are known, 
so with GenieWizard we focus on detecting missing functions and generating suggestions. 

3.3 Overview of GenieWizard 
GenieWizard assists in multimodal feature discovery by bridging 
the gap between the design and implementation of multimodal 
apps. This tool simulates user testing in the early implementation 
phases so that the developers can improve their implementation 
rapidly without going through the full software engineering life 
cycle. To achieve this, GenieWizard decomposes the problem into 
these stages. 

(1) Simulate User Interactions: Simulate the user’s multi-
modal interactions with the app based on the early version 
of the state code (e.g., an incomplete implementation, with-
out few-shot examples). 

(2) Speculate on Missing Features from Interactions: An-
alyze the generated user interactions and speculate on the 
missing features in the limited state code. 

(3) Suggest Features to Implement During Development: 
To help the app developers using the GenieWizard sys-
tem, GenieWizard suggests features and keeps track of the 
progress of the implementation for the developers in a con-
venient way. 

3.4 Simulate User Interactions 
Prior work on app development feedback typically uses a set of 
heuristic rules to provide suggestions for the designers and the 
developers [1] and/or retrieving similar designs to help developers 
make their design [1, 12]. However, given that there are not many 
existing multimodal apps, it is hard to build a set of heuristic rules 
or retrieve similar designs. GenieWizard takes a different approach. 
We simulate user interactions with the app using LLMs, similar to 
prior work on using LLMs to simulate social behaviors [1, 52]. 

The goal is to simulate diverse user behaviors that invoke unim-
plemented actions related to the app. The user interaction simula-
tion is listed in the four blocks on the left of Figure 2. 

First, we prompt the LLM with the extracted function signatures 
in the app’s state code to generate a brief one-sentence descrip-
tion of the app. This description is used to confine the generated 
interactions to be related to the app but not specific to the exist-
ing implementation. The description can be further edited if the 
developer intends for a specific use case. 

Second, to create diverse behaviors, we create a set of personas 
that represent different types of users. Targeting the US demograph-
ics, we created a system that can automatically generate profiles 
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representative of the occupation, gender, age, and name distribu-
tions of a US population from data collected from the US Census, 
Social Security Administration, and Bureau of Labor Statistics. To 
guide the persona’s behavior, GenieWizard also prompts the LLM to 
imagine a scenario for each profile, including a specific task related 
to the app description that a user fitting that profile may want to 
do. 

Third, to simulate real-world usage, we prompt the LLM for an 
interaction dialog between the user and the app using the persona, 
scenario, and app description. We prompt the model to simulate 
the app by providing a textual response and a description of what 
is being rendered on the screen to simulate the feedback from an 
actual multimodal interaction process. 

Lastly, we extract the simulated user utterances from the result-
ing dialog and use it as a set of user multimodal commands that 
should be supported by the app. 

3.5 Speculate on Missing Features from 
Interactions 

GenieWizard’s second stage is to derive the features needed to 
support the simulated user multimodal commands. Note that we 
do not simply map each user’s command into a single API call. 
The expressiveness of ReactGenieDSL can support many possible 
commands with a set of given fields and APIs. For example, it has 
sorting and filtering functions, and combinations thereof at its 
disposal. Therefore, given the location and price for each hotel, 
ReactGenieDSL can generate code to find the cheapest hotel in a 
location, or the closest hotel within a price range. Figuring out the 
features to add is thus nontrivial, and cannot be handled solely by 
an LLM. 

3.5.1 Speculative parsing. To tackle this problem, we use an LLM-
based neural semantic parser to translate user requests into React-
GenieDSL code. We prompt the parser to speculate and use new 
APIs if none of the provided APIs suffice. We refer to this technique 
as speculative parsing. All speculated APIs are potential features to 
implement. 

3.5.2 Zero-shot neural semantic parser. The semantic parser in Re-
actGenie requires the developer to provide some few-shot example 
pairs of user conversation and corresponding ReactGenieDSL. Not 
only is this tedious, but these examples must be updated whenever 
the code is changed, and it is not possible to supply these descrip-
tions for newly speculated APIs. Thus, it is desirable to create a 
zero-shot parser, which requires no examples of how each API is to 
be used. 

Through experimentation with prompts, we observed a zero-shot 
parser already performs quite well because of the familiar syntax 
of ReactGenieDSL and the presence of the function signatures of 
available functions in the prompt. However, there are problems 
with some unique design choices in ReactGenieDSL that caused 
some syntax errors, including the removal lambda expressions [22] 
and pervasive use of method chaining [27] (see the details in the 
ReactGenie paper [68]). 

Our solution is to teach the LLM-based semantic parser the 
unusual syntactic design of ReactGenieDSL using a small app. Ge-
nieWizard provides, as a fixed preamble to the LLM prompt, a small 

predefined app’s declaration of functions, few-shot examples of 
that app, and some tips for generating correct ReactGenieDSL code. 
The prompt then includes function declarations extracted from the 
developer’s app without any app-specific examples. We evaluated 
the accuracy of this zero-shot parser in Section 5.2. 

3.5.3 Feature identification. As shown in the center two blocks 
in Figure 2, our next step is to analyze the parsed ReactGenieDSL 
code, which may contain unimplemented functions, to understand 
what specific features are missing. Similar to in previous sections, 
the feature we mean here is a specific class, function, or property 
that the developer can add to support the unsupported command. 
We want to do this in a way that does not require the developer to 
provide a fully working implementation of the app, so we cannot 
call any of the developer’s functions to get a result. 

We use the concept of abstract interpretation [21] in program 
analysis to identify the missing feature. The idea is to execute the 
code abstractly by just computing the types in the program. Because 
ReactGenieDSL is strongly typed, we can abstract out the implemen-
tation of a function by using its signature. We refer to the process 
of using abstract interpretation to identify missing functions as 
a “dry run.” We built a version of the ReactGenieDSL interpreter 
that “dry runs” the generated commands and outputs the first en-
countered classes, functions, or properties the developer has not 
yet declared. Using the ReactGenieDSL code Room.All().price 
as an example, GenieWizard’s dry run module will first find the 
class name Room and its properties and functions. Then, it will 
find the function Room.All. Rather than calling the function that 
may not be fully implemented yet, it will directly check the return 
value type, which is Room[]. Finally, it will try to find the property 
price in the room class. In this case, if the property is not found, 
it will output a dry run error along with the missing app feature 
(class/property/function) mentioned in the app. 

Note that once the parser reaches the first unimplemented fea-
ture, it cannot speculate any further because the system does not 
have the missing feature’s type information. We found in our test-
ing that the majority of unsupported commands only require one 
missing feature. 

3.6 Suggest Features to Implement During 
Development 

We discovered through experimentation that the user simulation 
can often generate around a hundred unsupported commands per 
app. If this directly translates to an equal number of missing features, 
it would be overwhelming to show all of them to the developer. 

One naive approach is to group the same missing 
classes/properties/functions together by name and only show one 
of them to the developers. However, under different generated 
commands, the same feature may be implemented using different 
functions (e.g., hotel’s review score can be implemented as 
Hotel.rating or Hotel.reviewScore). In some cases, different 
features may be speculatively parsed into the same function 
(e.g., the user’s user ID and the user’s identification document 
can be parsed to User.ID). These are caused by the fact that the 
missing classes/properties/functions names alone are not enough 
to represent what the feature is for. 
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Figure 4: GenieWizard IDE Plugin: The GenieWizard IDE plugin provides developers with feature suggestions in the same place 
where they are writing code. It can provide suggestions of potential unsupported features through a list of suggested functions 
(unique features). Under each suggested function, developers can see the generated parsed commands in the same group. By 
hovering the mouse over a parsed command, developers can see the original generated user utterance to better contextualize 
the feature they are implementing. They can set goals by clicking on each unique feature, and a checkmark will appear next to 
it. While working on the implementation, checkmarks will appear next to the parsed command to indicate a generated user 
utterance that is now supported. The IDE also renders a progress tracker showing the percentage of commands implemented, 
the percentage of commands marked as will support, and the percentage of unmarked commands. 

To solve the problems with this naive approach, we first pro-
vide the originally generated command, the parsed ReactGenieDSL 
code, and the missing feature to the LLM and ask it to generate a 
brief description of the missing feature in the form of a comment 
(User.ID // The user’s identification document). This pro-
cess is illustrated in the rightmost block in Figure 2. We then cluster 
the generated commands using agglomerative clustering with the 
cosine distance between the embedding vector of the feature and 
description to form a list of clusters of unique features [24] (shown 
in Figure 4). We show each cluster’s representative feature to the 
developer and list every ReactGenieDSL statement in that category 
below it. 

To provide better context, the developer can hover above a React-
GenieDSL statement to see the originally generated user utterance 
that parsed to this statement. To further help the developer keep 
track of the implementation progress, we also provide a progress 
tracker that shows the percentage of the missing features that have 

been implemented, along with which commands are implemented 
and which are not. Developers can click on the features they would 
like to implement, and the plugin will automatically re-parse the 
generated user utterance under that category when it detects a 
function signature change in the state code. It will keep track of 
the developer’s progress and show their live progress in the IDE 
interface. 

4 Implementation 
We built a Python Flask server that handles every part of the Ge-
nieWizard pipeline except for the speculative parser, which has to 
be implemented using a TypeScript environment where the devel-
oper’s state code is written. We used OpenAI GPT-3.5-turbo for 
everything to save on inference costs and increase responsiveness 
except for the app description generation, for which we used GPT-4 
because we found GPT-3.5-turbo frequently generates irrelevant 
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app descriptions. We chose to generate 40 personas + scenario com-
binations and asked the model to produce 9-18 conversation turns 
for each. These parameters were chosen based on empirical results 
to establish a balance between speed and suggestion quality, and the 
resulting performance was systematically evaluated in Section 5.3. 
The model does not always follow the conversation-turn require-
ments we gave. After filtering out out-of-scope commands, such as 
“open the app”, using empirically-designed regular expressions, the 
system generates 410 potential user commands every time from 
the 40 personas + scenarios. Each time the developer requests a 
new feature discovery process, the entire utterance generation task 
costs around 0.03 USD to run, the missing feature speculation task 
costs around 2.5 USD5 , and the clustering task costs 0.01 USD. 
This cost is relatively low compared to the labor cost6 , so many 
developers can adopt it from a financial perspective. 

Separately, we implemented a VS Code Plugin as the developer’s 
user interface for the GenieWizard IDE in TypeScript. 

5 Evaluation 
We conducted evaluations on three major parts of the GenieWizard 
system: 1) the zero-shot parser, 2) the utterance generation pipeline, 
and 3) the suggestion generation and IDE user interfaces. To facili-
tate the evaluation, we also built two example multimodal apps for 
developers to improve upon in a user study. 

5.1 Example Apps for the Evaluation 
We built two example apps for the evaluation: a food menu ordering 
app and a hotel booking app. The food menu app is a web app 
that allows users to browse food options, place an order, and keep 
track of the food’s progress until it reaches the customer’s table. 
The hotel booking app is a web app that allows users to book 
hotels by selecting from/to dates and the number of guests, viewing 
availability, and creating bookings. We built both apps with a simple 
GUI implementation with functions for rendering content on the 
GUI with the ReactGenie framework (see Figure 5). These apps 
have a basic state code implementation to represent early versions 
of commercial apps. 

We conducted an IRB-approved crowd-based elicitation study 
similar to that described in our previous work [68] to create a gold 
standard for missing app features. We showed screenshots of the 
app being tested and asked people to demonstrate how they would 
interact with the app multimodally (see Figure 5). We improved 
upon our previous work’s methodology by making the interface 
accept voice and touch interaction inputs instead of using text 
to simulate voice input. This is because, in our pilot study, we 
found that text-based input frequently limited user interactions to 
relatively short and simple voice commands due to the high cost of 
typing, while using voice recognition better simulates a real-world 
multimodal interaction environment. 

The two apps we built represent common app categories that 
people frequently use (e.g., food menu apps — Toast/Yelp, and hotel 
booking apps — Hotels.com). We try to use simple screenshots to 
elicit questions based on participants’ experiences with apps in 

5This can be further reduced to approximately 0.8 USD by using the latest GPT-4o 
mini model. 
6The US country-wise minimal wage at the time of writing is 7.25 USD. 

the same category. For example, many people asked about room 
amenities even if they were not present in our test app screenshots. 

We recruited 40 participants (20 male and 20 female) on the 
research recruitment platform Prolific for each app and filtered 
out attention check failures and some entries where people mis-
understood the task (several participants treated the interface as 
a regular GUI app and the voice interface as a feedback recorder). 
Each survey submission took around 7 minutes to complete, and 
we paid each participant 1.4 USD. We gathered 298 user utterances 
for the hotel booking app and 367 for the food ordering app. 

5.2 Zero-Shot Parser Performance 
The goal of the zero-shot parser is to parse generated and end-
user commands to generate the correct ReactGenieDSL code and 
speculate on the missing features (classes/properties/functions) 
for unsupported commands, all without requiring the developer 
to provide example user command-ReactGenieDSL pairs. In this 
way, the zero-shot parser can be used both as a component in the 
app used by end-users and as part of GenieWizard’s pipeline. In 
this section, we will measure the accuracy of a few variants of the 
zero-shot parser we created and compare them against the few-shot 
parser from our prior work [68]. 

5.2.1 Measures. We would like to know what percentage of the 
parsed DSL from each parser is semantically and syntactically cor-
rect. Syntactically, the DSL is checked using the ReactGenieDSL 
interpreter’s syntax check. Semantically, for supported commands, 
the DSL has to use the right functions and achieve what the user 
wants. For unsupported commands, the function speculated by 
the parser has to fulfill the user’s request, and assuming that the 
speculated function exists, it has to achieve what the user wants. 

Notably, there may be different ways to satisfy the user’s 
request, and we would consider all of them correct. For ex-
ample, if the user asks “Recommend me a main dish.”, that 
can be translated to either FoodItem.All().matching(field: 
.menuSection, value: MenuSection.GetMenuSection(name: 
"main dish")).sort(field: .price, ascending: 
true)[0] or MenuSection.GetMenuSection(name: "main 
dish").getFoodItems().sort(field: .rating, ascending: 
false)[0]. Although the former and the latter use different 
functions to retrieve the main dish, they are both correct. As for 
the recommendation, the former recommends a low-price option, 
and the latter recommends a high-rating option, both of which 
fulfill the user’s desire. 

5.2.2 Procedure. We created three variants of our zero-shot parser 
with GPT-4, GPT-3.5, and Codex7 . We used ReactGenie’s few-shot 
parser8 built with Codex as a baseline for comparison. We randomly 
sampled 50 utterances from the user commands elicited for the food 
menu and hotel reservation apps, giving 100 utterances in total. 

7OpenAI Codex model (code-davanci-002) has about a one-call-per-second rate limit 
on OpenAI’s endpoints. Azure OpenAI API has much higher rate limits, but their 
Codex model is 20-30 times as expensive as GPT-3.5 and 2-3 times as expensive as 
GPT-4, making the cost prohibitive. This makes the Codex model infeasible for testing 
several hundred generated utterances. 
8For the main study, our app was developed without the few-shot examples. To test the 
few-shot Codex parser, we temporarily added seven examples for each app to produce 
the few-shot parser results for comparison. 

https://Hotels.com
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Figure 5: GenieWizard Example Apps and Elicitation Study Interface. We built two example apps for developers to improve 
upon: a food menu ordering app and a hotel booking app. We conducted an elicitation study with a multimodal command 
collection interface to collect possible real user commands for both apps. 

Category Zero-shot GPT-4 Zero-shot GPT-3.5 Zero-shot Codex Few-shot Codex 
Total (100) 77% (77) 69% (69) 80% (80) 72% (72) 
Supported (64) 90% (56) 84% (52) 90% (56) 89% (55) 
Unsupported (36) 55% (21) 45% (17) 63% (24) 45% (17) 

Table 1: Parser Accuracy: We compared GenieWizard’s zero-shot parser implemented on GPT-4, GPT-3.5, and OpenAI Codex 
(expensive and slow) with the few-shot Codex parser implemented in ReactGenie [68]. The results showed that the zero-
shot GPT-4-based and zero-shot GPT-3.5-based parsers perform similarly to the few-shot Codex-based parser on supported 
commands. On unsupported commands, all GenieWizard models match or surpass the few-shot Codex model. 

5.2.3 Results. As shown in Table 1, our zero-shot parser demon-
strated an accuracy similar to that of a few-shot Codex parser 
(90%) on supported commands (64% of total commands), indicating 
that our new zero-shot prompt is effective at understanding users’ 
requests while reducing development costs. For unsupported com-
mands (36% of total commands), all three zero-shot models have 
superior or similar performance compared to the few-shot parser. 
This is likely because we actively encouraged missing feature gener-
ation (speculative parsing) in the newly designed zero-shot prompt. 
Moreover, all parsers performed worse on unsupported commands 
than on supported commands. This is expected since the parser 
must consider the missing feature while parsing the user input. 

Among the zero-shot parsers, the GPT-3.5-based parser has much 
lower costs, lower latency, and reasonable accuracy, so we selected 
that as the model to use in the final tool. 

In the following evaluations, we need to find unsupported com-
mands in elicited user commands. The parser can be actually used 
as a filter for possible unsupported commands. If the parser gen-
erates a syntax error or there is no syntax error but it refers to a 
non-existing class/property/function (discovered through the dry 
run), we treat it as potentially having unsupported commands, and 
we can then manually inspect it. Due to Codex’s high price and low 
throughput, we used zero-shot GPT-4 as the model to do the initial 

filter. We evaluated the accuracy of this method as the indicator 
of potential unsupported commands. This method achieved 81% 
precision and 68% recall. 

5.3 Generation Pipeline Performance 
The goal of the utterance generation pipeline is to generate fea-
ture suggestions that can cover a broader range of user-desired 
commands that are currently unsupported. We would like to know 
what proportion of real users’ unsupported command types we can 
discover using our pipeline. 

5.3.1 Measures. To evaluate the utterance generation pipeline, 
we would like to know the percentage of real users’ unsupported 
commands that can be covered by GenieWizard’s pipeline versus 
simply prompting GPT-4 to generate feature suggestions using the 
same code skeleton and app description as context. 

Specifically, we would like to extract unsupported commands 
in the real-user datasets we collected from the elicitation study 
described in Section 5.1, and see if these commands can be covered 
by commands generated by the two different systems (GenieWizard 
or prompting GPT-4). We define distinct groups of commands as 
commands that can mutually be supported by the app by adding a 
single class/property/function. We consider a group of real users’ 
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Figure 6: GenieWizard Pipeline Performance: GenieWizard automatically generated commands have high coverage over real 
user-elicited commands. GenieWizard’s commands can cover 74% and 67% of the user-elicited commands of the food ordering 
and hotel booking app, respectively. Prompting GPT-4 to generate the same number of suggestions can only generate 7% and 
25% of the elicited commands. 

commands covered if a system-generated suggested command also 
belongs to the group. The higher the coverage, the better the system 
is given the same number of suggestions/groups. 

5.3.2 Procedure. To extract real users’ unsupported commands, 
we used the aforementioned GenieWizard’s GPT-4-based parser 
+ dry run filter to retrieve possible unsupported user commands. 
We removed the supported ones and were left with 82 user-elicited 
commands from the food ordering app and 60 from the hotel book-
ing app. We further labeled them collaboratively to reveal different 
missing feature groups (i.e., each group could be implemented with 
the same class/property/function). We found 19 groups of com-
mands for the food ordering app and 27 for the hotel booking app. 

For GenieWizard’s generation pipeline, we generated user utter-
ances with 40 different persona and scenario combos. We extracted 
117 generated commands for the food ordering app and 103 for the 
hotel booking app. We then assigned generated commands that 
belong to an existing group of user-expected commands to that 
group and created new groups for commands that do not belong 
in an existing group. In the end, we got 16 and 26 groups of gen-
erated commands for the two apps, respectively. Among them, 8 
and 11 groups fall within the same groups as in the user-elicited 
commands. Note that these groups have an uneven distribution of 
commands, meaning that a few groups have a lot of commands 
while many other groups have very few commands. As a result, the 
coverage of GenieWizard for the food ordering app and the hotel 
booking app are 74% and 67%, respectively. 

As a comparison, we asked GPT-4 to also generate 16 and 26 
features to add for both apps. Note that we limit the features to the 
same number of groups that the GenieWizard pipeline generates 
because each suggestion of GPT-4 is always in its unique group. In 

this way, we are simulating the case where the developers received 
the same number of suggestions directly from the LLM as in the 
GenieWizard condition. The GPT-4-based suggestion only covers 
7% and 25% of the user-elicited commands for the two apps. 

To further evaluate the system’s performance when fewer per-
sona and scenario sets are used to save compute, we conducted 
an additional experiment where we sampled randomly drawing a 
subset of different numbers from the 40 persona + scenario com-
binations and measured how much coverage of the total number 
of unsupported commands we can achieve with a subset of what 
we have generated. As shown in Figure 6, GenieWizard easily beat 
direct GPT suggestions starting at only four persona + scenario sets. 
This indicates the advantage of GenieWizard is that we can better 
support the developer in bridging the gap between the supported 
commands and the user’s desired intention space. 

5.4 Developer Experience with GenieWizard 
Plugin 

To evaluate the efficacy of GenieWizard, we conducted an IRB-
approved user study asking developers (𝑁 = 12) to identify missing 
functions of the two example apps (see Figure 5) with the regular 
VS Code IDE9 as a baseline and compared it against what they 
identified as missing when using our GenieWizard IDE. 

5.4.1 Study Design. The study was facilitated using a remote desk-
top to ensure all participants completed the coding tasks in the 
same environment. The experimenter first introduced the study 
goals and explained study-related concepts such as multimodal 

9Both have GitHub Copilot enabled to save the developer’s time. 
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apps since most participants did not have multimodal development 
experience. 

As our participants are expected to modify ReactGenie apps dur-
ing the main tasks, we first provided a short tutorial to demonstrate 
how to use ReactGenie by building a simple counter app. This task 
helped familiarize our participants with the basic architecture of a 
ReactGenie app, including state code, UI code, and code that links 
UI and state code. In the main tasks, they mostly needed to add 
functions to the state code, through doing so requires a more holis-
tic understanding of how the entire system works. The tutorial took 
about 30 minutes to complete. 

The main study process contains two multimodal app improve-
ment tasks with the goal of “optimizing these two multimodal ap-
plications using different methods to support as many multimodal 
interactions as possible for the users” within a limited amount of 
time (30 minutes for each app). In the two tasks, the developer used 
a different tool (VS Code vs. GenieWizard IDE) on different apps. 
We used a counterbalanced design to control learning effects due 
to the order of the tools and the combinations of tools and apps. 

Finally, participants were required to complete a post-study sur-
vey that included their demographic information, and they were 
asked to fill out the SUS usability scale [13] and the NASA-TLX 
cognitive load scale [30]. We recorded audio and the shared screen 
during the entire process with the participant’s permission. Each 
participant received a $50 gift card as compensation after the study. 

5.4.2 Participants. We recruited 12 React developer participants 
(8 males) by distributing the recruitment link using a convenience 
sample. Our participants include student developers and profes-
sional developers with an average age of 24.17 (𝜎 = 2.37). Three 
participants had TypeScript development experience, and one de-
veloper had experience with ReactGenie. 

5.4.3 Results. We labeled developers’ implemented features into 
the same user-elicited command groups as above. As shown in 
Table 2, the GenieWizard conditions resulted in a significantly 
larger increase in the supported command coverage than with 
the baseline condition (paired t-test, 𝑡 = 6.077, 𝑝 < 0.001). The 
unsupported command reduction averaged 42%. The statistics in 
Section 5.2 showed that, from the randomly sampled 100 commands, 
our initial app prototypes provided to the developers support 64% 
of the user’s commands (36% unsupported). Therefore, combining 
these two statistics, the unsupported commands can be reduced by 
36% × 42% ≈ 15%. In other words, developers with GenieWizard 
can potentially increase the supported command percentage from 
64% (about one in three user commands are unsupported) to 79% 
(about one in five user commands are unsupported), which should 
be noticeable from a user experience perspective. When looking 
at the individual developer’s performance when using GenieWiz-
ard, only P7’s unsupported command percentage did not decrease. 
We observed that this participant did not follow the suggestions 
provided by GenieWizard but instead optimized both applications 
according to their own ideas. The participant stated that although 
GenieWizard provided good advice, they preferred to explore the 
potential features of the application on their own. 

GenieWizard also showed a higher level of usability and a lower 
participant burden than the baseline. The participants’ mean SUS 
score (see Figure 7, middle) for the GenieWizard plugin is 77.5 

Participant ID Baseline GenieWizard 
0 [Food] 19/233 (08%) [Hotel] 086/163 (53%) 
1 [Hotel] 31/163 (19%) [Food] 125/233 (54%) 
2 [Food] 07/233 (03%) [Hotel] 051/163 (31%) 
3 [Hotel] 22/163 (13%) [Food] 113/233 (49%) 
4 [Food] 00/233 (00%) [Hotel] 074/163 (45%) 
5 [Hotel] 11/163 (07%) [Food] 081/233 (35%) 
6 [Food] 12/233 (05%) [Hotel] 067/163 (41%) 
7 [Hotel] 25/163 (15%) [Food] 000/233 (00%) 
8 [Food] 30/233 (13%) [Hotel] 048/163 (29%) 
9 [Hotel] 18/163 (11%) [Food] 155/233 (67%) 
10 [Food] 33/233 (14%) [Hotel] 070/163 (43%) 
11 [Hotel] 19/163 (12%) [Food] 137/233 (59%) 

Table 2: Comparison of Baseline and GenieWizard on Help-
ing Developers Address Unsupported Features: The results 
showed that GenieWizard, on average, can help developers 
implement 42% of the unsupported actions compared to a 
baseline IDE solution of 10%. 

(𝜎 = 8.52). For the baseline, the mean score is 41.46 (𝜎 = 18.26). 
GenieWizard’s SUS score is significantly higher than the baseline 
(paired t-test, 𝑝 < 0.001, 𝑡 = 6.292), showing its better usability for 
this task. The average NASA-TLX (see Figure 7, left) score from 
participants with the GenieWizard plugin is 29.53 (𝜎 = 12.24). 
With the baseline, the score is 60.49 (𝜎 = 13.27). The score of 
GenieWizard is significantly lower than the baseline (paired t-test, 
𝑝 < 0.001, 𝑡 = −5.145). 

We used a seven-point Likert scale questionnaire to evaluate 
whether the participants would use these tools in real life10 (see 
Figure 7, right). The median Likert-scale rating (1-strongly disagree, 
7-strongly agree) for GenieWizard and the baseline methods are 7.0 
and 3.0, respectively. We found a statistically significantly higher 
rating for GenieWizard than the baseline method (𝑊 = 0.000, 𝑝 = 
0.003). 

All participants expressed that their greatest difficulty in using 
the baseline was not knowing what potential needs the end-users 
may have and not knowing which features should be supported. 
They hoped to have actual test cases to assist them in improving 
the application. One participant even chooses to refer to other apps 
to get inspiration. The participants agreed that GenieWizard can 
help them improve their application quickly and efficiently. While 
using GenieWizard, participant 1 said, “It provides me with various 
insights from other users and then prevents 11 me from exhaustive 
searching of possible user demands.” 

However, some participants also found some parts of the inter-
actions simulated by GenieWizard to be difficult to understand. For 
example, in one study session, a generated suggestion asks for a 
specialRequest function for a food item. The participant in that 
session found it hard to understand the requirements associated 
with this suggestion. Furthermore, one participant wished that 
GenieWizard not only provided suggestions but also helped them 
implement some of the functions. 
10The prompt is “Would you consider using this method to build multimodal application 
in real life?” 
11Note by authors: the participant probably meant “alleviates”. 
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Figure 7: Comparing mental load, usability, and participant preference of developing with GenieWizard compared to without 
GenieWizard. An 𝑁 = 12 study has shown that GenieWizard induced less mental load (𝑝 < 0.001, 𝑡 = −5.145). It has also shown 
GenieWizard is more usable for improving a multimodal app (𝑝 < 0.001, 𝑡 = 6.292). Participants also expressed willingness to use 
GenieWizard in their real life. **: p < 0.01 ***: p < 0.001 ****: p < 0.0001 

6 Discussion 
The development of multimodal applications presents unique chal-
lenges due to the vast interaction space and the difficulty in antici-
pating user behaviors. Our work with GenieWizard demonstrates 
the potential of AI-powered tools to address these challenges and 
support developers throughout the implementation process. In this 
section, we discuss our rationale for why we chose an API-level 
suggestion scheme. Then, we discuss the implications of our find-
ings, contextualize GenieWizard within the broader landscape of 
AI-assisted development tools for multimodal apps, and explore 
the limitations and future directions of this approach. We begin 
by examining how GenieWizard leverages AI to bridge the gap 
between user expectations and developer implementations, then 
consider the limitations of our current approach, and finally pro-
pose avenues for future research and development in this rapidly 
evolving field. 

6.1 API Level Suggestions vs. Concept Level 
Suggestions 

GenieWizard suggest features to developers in the format of APIs 
to implement. An alternative method could be providing high-level 
features (concepts) directly based on synthesized user interactions. 
However, this alternative method will not work well for multimodal 
interactions. 

For multimodal interactions, there is not a one-to-one mapping 
from user requests to app feature implementations (see Section 1.1). 
The alternative method will not work because, multimodal apps 
are unlike traditional GUI apps, where features are usually user 
behaviors that the app supports through a series of controls. In 
multimodal interactions, the developer’s code is composed together 
to support a great variety of possible multimodal user requests, and 
features can only be clearly defined at a lower level, i.e., function 
level. 

A typical user request, function call, and app feature look like 
the following: 

User request: What is the cheapest main dish that I have 
ordered from this restaurant before? 

Function calls: Order.All().filter(field: .restaura 
nt, object: Restaurant.Current()).m 
ainDishes.sorted(field: .price, asc 
ending: true)[0] 

Feature missing: Order.mainDishes 

User requests are supported by composing different app features 
together through a series of function calls. To understand whether 
a user request is supported, we have to decompose the user request 
down to the function call level to see if any functions are miss-
ing. At this point, proposing features as concepts vs features as 
functional calls are equivalent. In fact, the GenieWizard proposed 
function calls are only helping developers keep track of which user 
requests can be supported by their implementation, even if they 
implement them differently. For example, the above missing fea-
tures can also be implemented by adding a field to the Food class 
called isMainDish, and GenieWizard can also keep track of the 
implementation progress accordingly. 

6.2 AI-powered Tools for Multimodal App 
Development 

The adoption of multimodal apps has been limited by the prohibitive 
development efforts required to support the potentially exponential 
number of commands users can ask. In other words, developers 
need to write all the functions separately to support all the possible 
user queries. Our prior research [68] alleviated this problem by 
using LLMs to compose different features built by developers to 
support users’ specific commands. However, the multimodal inter-
face means that users may expect features not originally built into 
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the app, resulting in 41% of unsupported commands in ReactGenie’s 
evaluations [68]. 

GenieWizard tries to address this unsupported command prob-
lem by using AI-powered tools. We have demonstrated that devel-
opers may only implement 10% of missing functions through their 
common sense reasoning (Section 5.4). We also found that simply 
prompting GPT-4 for feature suggestions can only cover 16% of 
missing functions. Therefore, we need a better pipeline to simulate 
user behavior and app responses, and give concrete, actionable 
suggestions. 

We built GenieWizard’s pipeline to start with the developer’s 
program skeleton to support feature discovery early in the imple-
mentation phase. GenieWizard then generates possible user interac-
tions by sampling from user personas and simulating app behavior 
through a text-based conversation using LLMs. GenieWizard fur-
ther identifies missing features in the generated commands and 
clusters them to form actionable suggestions for developers. We 
found GenieWizard’s suggestions can cover 71% of the missing 
features in real user commands (Section 5.3). 

To make developers’ lives easier, we present these suggested fea-
tures in an IDE plugin so that developers can see these suggestions 
right where they write code. GenieWizard also presents relevant 
user commands and parsed ReactGenieDSL lines to demonstrate 
how these suggested features may be used. In addition, GenieWiz-
ard’s IDE plugin can show the percentage of generated commands 
that are currently supported while the developer is changing their 
code, giving them a more direct feeling of the progress they have 
made. Overall, we demonstrated in Section 5.4 that developers 
with GenieWizard can implement 40% of missing features in actual 
users’ commands, which is a huge improvement over the 10% when 
completing the same task without GenieWizard. 

GenieWizard shows great promise for AI to help in the develop-
ment of multimodal apps. In addition to helping the program better 
understand the user at run time, it can also help the programmer 
better understand and support users at development time. 

6.3 Limitations 
One limitation of our evaluation is that the grouping process is 
ambiguous in nature. For example, the customization of “crust” and 
the customization of “toppings” can be implemented as two separate 
functions (FoodItem.setCrust() and FoodItem.setTopping()) 
or a single function (FoodItem.addCustomizations()). We used 
our experience in engineering apps with ReactGenie to select the 
best implementation path for the grouping process. 

Our pipeline generates personas from a general US population 
distribution, and our survey is also limited to US populations. 
Within the scope of the paper, we cannot be sure whether this 
finding of high alignment between generated personas and target 
population can be generalized to other sub-populations. 

Another concern is the potential bias in LLMs [61] may skew the 
generated commands and, therefore, steer the development of the 
next generation of multimodal apps. In an early pipeline version, 
we tried to ask the LLM to directly generate personas and scenarios. 
However, we discovered that the LLM generated many male persona 
named “James.” To mitigate this issue, we wrote a module to sample 
user profiles according to a US representative population. There 

may be more bias that is yet undiscovered in GenieWizard, so more 
caution needs to be taken when using developer tools such as 
GenieWizard. 

6.4 Future Work 
This paper demonstrated GenieWizard as a tool to improve multi-
modal apps. Recently, the voice assistant industry has also moved 
towards using LLMs and API calling to implement voice chatbots. 
Future work can investigate a similar user interaction generation 
pipeline that may also be able to help chatbot developers implement 
more APIs to improve chatbot user experiences. 

Currently, we only tested using GenieWizard to help with the 
first round in the app’s development lifecycle. We have not yet 
tested the tool when an app has gone through a round of actual 
user feedback and redesign and whether GenieWizard can still 
provide benefits to the developer. Once there is an implemented 
version of the app, future iterations with GenieWizard can also 
consider how to take an already available UI into consideration to 
generate more representative user utterances. 

7 Conclusion 
Multimodal interactions allow users to utilize an app in more flexi-
ble and efficient ways. However, this also raises the bar for devel-
opers to implement usable multimodal apps, as the space of user 
actions can significantly expand now that the GUI does not con-
strain user actions. If the required functions are unimplemented, the 
user experience may suffer. In this research, we aim to bridge this 
gap by introducing a novel developer tool, GenieWizard. This tool 
provides early feedback on the missing functions of a multimodal 
app, enabling developers to receive auto-generated suggestions 
that can cover a majority of user actions, even with just a basic 
skeleton version of the app. The GenieWizard pipeline consists of 
the following sequential components. First, GenieWizard gener-
ates user personas and simulates user actions (commands) based 
on these personas. This helps bootstrap the design feedback pro-
cess in the absence of established design principles for multimodal 
apps. Then, our zero-shot parser parses the simulated actions into 
DSL code without any developer input. Finally, our dry run mod-
ule can automatically test the generated actions and commands 
and offer suggestions about unsupported functions. Our evaluation 
has demonstrated the strong performance of the different compo-
nents of the pipeline, as well as the end-to-end impact. This is best 
represented by the significant increase in the number of missing 
functions developers can identify and fix during a short lab study 
session, showing that GenieWizard is both effective and usable. 
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