
GenieWizard: Multimodal App Feature Discovery with Large
Language Models

Jackie (Junrui) Yang
Computer Science Department

Stanford University
Stanford, California, USA

Skywalk Inc.
Palo Alto, California, USA
jackie@jackieyang.me

Yingtian Shi
School of Interactive Computing
Georgia Institute of Technology

Atlanta, Georgia, USA
yshi457@gatech.edu

Chris Gu
Computer Science Department

Stanford University
Stanford, California, USA
cgu26@stanford.edu

Zhang Zheng
Computer Science Department

Stanford University
Stanford, California, USA
zhangzhengzr@gmail.com

Anisha Jain
Independent Researcher
Stanford, California, USA
anishaj037@gmail.com

Tianshi Li
Khoury College of Computer Sciences

Northeastern University
Boston, Massachusetts, USA
tia.li@northeastern.edu

Monica S. Lam
Computer Science Department

Stanford University
Stanford, California, USA
lam@cs.stanford.edu

James A. Landay
Computer Science Department

Stanford University
Stanford, California, USA
landay@stanford.edu

Abstract
Multimodal interactions are more flexible, efficient, and adaptable
than graphical interactions, allowing users to execute commands
beyond simply tapping GUI buttons. However, the flexibility of
multimodal commands makes it hard for designers to prototype
and provide design specifications for developers. It is also hard for
developers to anticipate what actions users may want. We present
GenieWizard, a tool to aid developers in discovering potential fea-
tures to implement in multimodal interfaces. GenieWizard supports
user-desired command discovery early in the implementation pro-
cess, streamlining the development process. GenieWizard uses an
LLM to generate potential user interactions and parse these interac-
tions into a form that can be used to discover the missing features
for developers. Our evaluations showed that GenieWizard can reli-
ably simulate user interactions and identify missing features. Also,
in a study (N = 12), we demonstrated that developers using Ge-
nieWizard can identify and implement 42% of the missing features
of multimodal apps compared to only 10% without GenieWizard.

CCS Concepts
• Human-centered computing → Interaction paradigms; Sys-
tems and tools for interaction design; Natural language interfaces; •

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3714327

Software and its engineering → Software creation and manage-
ment; • Computing methodologies → Natural language process-
ing.

Keywords
Multimodal interfaces, developer tools, large language models, fea-
ture discovery, interaction simulation, voice interfaces, touch inter-
faces, semantic parsing, multimodal app development

ACM Reference Format:
Jackie (Junrui) Yang, Yingtian Shi, Chris Gu, Zhang Zheng, Anisha Jain,
Tianshi Li, Monica S. Lam, and James A. Landay. 2025. GenieWizard: Multi-
modal App Feature Discovery with Large Language Models. In CHI Con-
ference on Human Factors in Computing Systems (CHI ’25), April 26–May
01, 2025, Yokohama, Japan. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3706598.3714327

1 Introduction
Multimodal interactions1 allow users to engage with computer
systems using a combination of multiple input modalities, such
as touch and voice. These interactions have been proven to offer
more flexibility, efficiency, and adaptability for various users and
tasks [64]. Unlike touch-only interactions, where users are limited
to actions displayed on a graphical user interface (GUI), multimodal
interactions allow users to express their intentions using a combi-
nation of modalities. Our prior research has shown that even apps
developed with a state-of-the-art multimodal framework may fail
to support 41% of the desired commands from real users [68]. This
result is caused by users voicing any command that comes to mind,

1Specifically, this paper targets multimodal apps that use deictic gesture + speech
interactions. This is a common category of multimodal applications proposed by Oviatt
[51].

https://orcid.org/0000-0002-2064-5231
https://orcid.org/0000-0001-8733-7041
https://orcid.org/0009-0008-8873-1575
https://orcid.org/0009-0002-8529-1216
https://orcid.org/0009-0003-4819-529X
https://orcid.org/0000-0003-0877-5727
https://orcid.org/0000-0002-7626-6468
https://orcid.org/0000-0003-1520-8894
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3706598.3714327
https://doi.org/10.1145/3706598.3714327
https://doi.org/10.1145/3706598.3714327
mailto:landay@stanford.edu
mailto:lam@cs.stanford.edu
mailto:tia.li@northeastern.edu
mailto:anishaj037@gmail.com
mailto:zhangzhengzr@gmail.com
mailto:cgu26@stanford.edu
mailto:yshi457@gatech.edu
https://jackie@jackieyang.me
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706598.3714327&domain=pdf&date_stamp=2025-04-25

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Jackie (Junrui) Yang, Yingtian Shi, Chris Gu, Zhang Zheng, Anisha Jain, Tianshi Li, Monica S. Lam, and James A. Landay

@GenieClass("A room item")
export class Room extends
DataClass {
 @GenieKey
 public id: string;
 @GenieProperty("the name of
the room")
 public name: string;
 @GenieFunction("Show preview
of booking of the room")
 bookRoom({startDate,
endDate}) {
 …
 }
}

Code Skeleton Simulated user commands API Level Feature SuggestionsGUI Design

“Show me hotels less
than $100.”

“Can I request for
some discount?”

“What are interesting
places to visit nearby?”

Hotel.price

InterestingPlaces{}

Booking.requestDiscount()

GenieWizard

Feature
Spectulation

!

 search

"

 price

Design
(Designers)

Implementation
(Developers)

Figure 1: GenieWizard helps developers discover commonly expected features in multimodal apps: Based on the GUI design
provided by the designers, multimodal app developers write an initial code skeleton. GenieWizard can help developers by
suggesting features that need to be implemented to provide a good initial app experience. GenieWizard achieves this by
simulating user commands using a large-language model(LLM), speculating about missing features using a zero-shot parser
and abstract interpretation, and providing actionable API-level feature suggestions to developers.

not being limited to what is displayed on the GUI. As such, it is
significantly more difficult for multimodal apps to provide a smooth
user experience without interruptions from unsupported command
errors. If an app cannot handle the commands a user issues, it may
lead to frustration and discourage natural exploration [43].

Feature discovery for GUI apps can be supported by user testing
using design and prototyping tools like Figma without implement-
ing the full system and UI. However, the same cannot be done for
multimodal UIs due to the complexity of implementing multimodal
interactions. This paper shows how we can support feature discov-
ery for multimodal apps without implementing a full prototype.

1.1 Feature Discovery for GUI and Multimodal
Apps

The Software Development Life Cycle (SDLC) [4] has several
variations of workflows, such as the waterfall model [55], spiral
model [9], incremental model [54], and agile methods [33]. These
models include common stages, including design, implementation,
and testing. Designers can address most GUI usability issues at the
design stage using GUI design prototypes. GUI design tools such
as Figma support user testing with an interface prototype. As users
interact with the prototype, a prepared screen representing the
GUI design will appear, allowing the user to test the app without
needing a code-based implementation.

Consider the development of a hotel search application, as shown
in Figure 1. Designers can usually make a clickable GUI prototype
with little to no code. From user feedback during usability testing,
they can discover necessary GUI improvements like adding a button
(e.g., a search button) or a label (e.g., a price label). The missing cor-
responding functions, such as a search function hotel.search()
and a price property hotel.price can be captured in a design spec-
ification, such as a Figma document, which is then used to inform
the implementation.

Multimodal commands are inherently richer and more flexible.
In this hotel search example, the user may ask “Show me hotels
for less than $100”, or “Can I request a discount for this hotel”
while simultaneously tapping on a hotel entry. These are both rea-
sonable commands to use when searching for a hotel, but their
implementation is nontrivial. Multimodal apps can better address
the exponentially many combinations of features conveyed in mul-
timodal commands through an LLM-based neural semantic parser.
For example, ReactGenie [68] uses such a parser to translate natural
language into an executable domain-specific language (DSL) that
uses compositional constructs to connect implemented functions
and the user’s current interaction (e.g., voice and touch) to execute
the user’s command. In contrast to what is needed to support the
more limited functionality of GUI applications, multimodal applica-
tions necessitate more extensive and more expensive user research
during the initial development phase. This is because developers
need a set of common user commands that align with user expec-
tations to plan out the functions to implement. So, discovering
commonly used features early in the development process is even
more crucial for multimodal apps.

With GUI applications, features2 are closely tied to interface
elements, enabling developers to easily link interface operations
with their corresponding implementations. However, the features
in multimodal apps can be nontrivial to conceptualize, meaning
that without having a deep understanding of how the app will
be implemented, developers cannot anticipate whether a desired
multimodal command can be supported and which group of com-
mands can be supported through the same underlying features. For
example, a hotel search app probably already has logic dealing with
hotel pricing information in its database. If the user says, “Show
me hotels for less than $100,” the semantic parser can automatically
translate the command into code that filters hotels based on pricing

2Here, “features” means lower-level programming features, i.e., specific classes, prop-
erties, and functions in an app.

GenieWizard: Multimodal App Feature Discovery with Large Language Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan

information. In contrast, a command such as “What are interesting
places to visit nearby?” likely requires more code changes. For ex-
ample, this might require creating a new attractions class, and
the semantic parser would produce a query involving the hotel and
nearby attractions.

In summary, for multimodal apps, it is both more challeng-
ing and important to discover features without a prototype
implementation. Multimodal interactions present two major
challenges to the development workflow:

(1) How can we prototype multimodal interactions without ex-
tensive implementations?

(2) How can missing features be conveyed in a way that is ac-
tionable for developers?

1.2 Introduction to GenieWizard
We present GenieWizard, a developer tool (see Figure 4 for the user
interface) that aids developers in discovering the features needed
to support common multimodal interactions in the early stages of
implementation. GenieWizard provides an IDE that allows devel-
opers to code as usual, while also providing feature suggestions
and an interface to track their implementation progress towards
these features. To use GenieWizard, developers only need to provide
early-stage code skeletons (i.e., class/property/function definitions).
They do not need to provide full implementations, and there are no
GUI designs required. Through an automated feature suggestion
pipeline, GenieWizard can suggest potential features to implement
potential user commands. Figure 2 provides an overview of Ge-
nieWizard.

1.2.1 Feature discovery before prototyping. Our approach is to
leverage the generative power of large language models (LLMs)
to simulate user testing with a simulated app. GenieWizard first
derives an app description from the code skeleton. It uses an LLM
to generate personas of potential users based on the app description
and randomly sampled demographic data. Then, it uses an LLM
to simulate commands from each persona interacting with an app
instructed to behave according to the same app description.

1.2.2 Suggesting missing features to developers. GenieWizard’s
next step is to suggest features for the app implementation. Note
that, as stated in Section 1.1, multimodal features are nontrivial
to deduce. We cannot directly tell what features are missing from
generated user interactions without first parsing them into actual
commands. Therefore, the suggestions need to be at the API level
to be effective. We discuss more about this in Section 6.1.

We leverage the hallucination of LLMs as generative power to
design the missing features. An LLM-based neural semantic parser
is instructed to use a set of APIs given by developers. What hap-
pens if a user command cannot be implemented with any of the
given APIs? The parser will hallucinate, referring to classes, prop-
erties, and functions that do not exist. In production, we need to
suppress the hallucinations and force the parser to recognize that
the requested command is not yet supported.

Our novel design turns this LLM bug into a feature by explicitly
encouraging the hallucination behavior when the app cannot fulfill
the interaction required by the simulated user. This is achieved with
a carefully crafted prompt we supply to the LLM. Next, GenieWizard

scans the generated API calls for missing classes, properties, and
functions, clusters similar ones, and provides a concrete and concise
list of suggested features (i.e., classes, properties, and functions) for
developers to implement.

1.2.3 Workflow Integration of GenieWizard. We imagine GenieWiz-
ard will be used in the initial implementation stage of a multimodal
app’s development cycle (see Figure 1). Designers will provide a
full GUI design and list the app’s target use cases. Developers first
design an initial app architecture—especially the state code skele-
ton—based on the GUI design and specified use cases. They then
provide this initial code (along with the use case details as part of
the app description) to GenieWizard, which helps refine the archi-
tecture and implementation until the app can support the predicted
common user requests. The goal is that the first version of the new
multimodal app will be much more functional (less unsupported
commands) for end-users with the help of GenieWizard.

1.2.4 Contributions. Our main contributions include:

• A novel system, GenieWizard, that helps developers discover
a rich and useful feature set for a multimodal application,
automatically, early in the implementation cycle, through
LLM-based user/app interaction simulations.

• A technical approach incorporating a zero-shot parser and
a dry run utility that can understand simulated multimodal
commands and translate them into missing properties, func-
tions, and classes.

• An evaluation of GenieWizard showed that generated user
commands cover, on average, 71% of the desired user com-
mands, the zero-shot parser can match the performance of
the few-shot parser of the prior work, and developers using
the GenieWizard plugin can implement more of the desired
commands (42%) than using a baseline tool (10%).

2 Related Work
Our work builds upon and extends many prior research projects.
The topics include: UI design and testing tools, UI feedback tools
with AI, developer tools with AI, multimodal development frame-
works, and multimodal interactions frameworks with AI. In this
section, we will review key contributions to these topics and show
how our approach differs.

2.1 UI Design and Testing
The evaluation of user experience is an important part of software
development [32]. The feedback obtained from testing with users
can be utilized for program and interface improvements. Nielsen
and Molich [48] first proposed seven factors, including error preven-
tion, user control, and freedom, among others, as usability heuristics
for designers and developers to test. Designers and developers can
use analytical evaluation techniques to collect user feedback and
examine the user experience. Thinking aloud [40] requires users to
make spoken comments while accomplishing specific interaction
tasks. Keystroke-level analysis [17] predicts how long it will take
an expert user to accomplish a routine task without errors using
an interactive computer system to help evaluate user experience.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Jackie (Junrui) Yang, Yingtian Shi, Chris Gu, Zhang Zheng, Anisha Jain, Tianshi Li, Monica S. Lam, and James A. Landay

Code
Signatures

App
Description

Interactive
Dialog

Personas &
Scenarios

Parsed
DSL

Dry Run
Result

Feature
Suggestions

// A food item
class FoodItem {
 string name;
 float price;
 // the menu section of
the food
 MenuSection menuSection;
 static FoodItem
GetFoodItem(name: string);
 static FoodItem[] All();
 static FoodItem
Current();
 static FoodItem[]
AllCurrent();
}

This app is a digital menu designed
for dinning in an Italian restaurant.

Landon Holt, a 22-year-old male
from Johnson County, Missouri, is a
personal financial advisor. …

Landon wants to use the digital
menu app in an Italian restaurant to
enhance his dining experience. He
is looking forward to exploring the
menu options and discovering new
dishes. Landon's task is to browse
through the digital menu, select his
preferred dishes, and customize
them according to his dietary
preferences. …

…
user: What are the ingredients in the
Penne Arrabiata?
app: The Penne Arrabiata is a spicy
pasta dish made with penne pasta,
tomato sauce, garlic, chili flakes,
and topped with Parmesan cheese.
It has a kick of heat and is perfect
for spice lovers. Would you like to
add it to your order?
…
user: Add extra cheese to the
Vegetarian pizza.

FoodItem.GetFoodItem(
name: "Penne Arrabiata"
).getIngredients()

FoodItem.GetFoodItem(
name: "Vegetarian pizza"
).getFoodItems().matching(
field: .name, value: "extra
cheese").add();

FoodItem.getIngredients()

FoodItem.getFoodItems()

FoodItem.getIngredients()
// Returns a list of
ingredients for a specific
food item.

FoodItem.addToppings()
// Adds toppings to a
specific food item.

Figure 2: GenieWizard Suggestion Generation Pipeline: GenieWizard’s suggestion generation pipeline starts from developer-
provided code signatures and generates feature suggestions through an automated pipeline. It involves three general stages:
simulating user commands (purple, left four), speculating on missing features (yellow, center two), and suggesting features to
implement (blue, right one).

Other methods, such as long-term diary research [10], daily re-
construction methods [35], and the experience sampling method
(ESM) [46] are used to assess the usability of software during use.

However, most of these methods generally require users to ex-
perience a functioning application, which requires much of the
implementation to be finished before obtaining user feedback. Con-
sidering the perspectives of risk management and development
efficiency [18], prototyping can help developers conduct functional
tests of various industrial product outputs during the development
stage [16]. Budde et al. [14] classify prototypes according to the
manner of their construction. Different prototyping methods al-
low developers to test user interfaces (horizontal prototypes) or
individual features (vertical prototypes) without completing the
entire program. The MENULAY [15] and the Dynamic Interface
Creation Environment [56, 57] were two of the earliest UI proto-
typing tools that allowed developers to test the layout of interface
elements, such as the placement of text boxes and buttons. Floyd
[25] and Naumann and Jenkins [47] all believe that prototyping
starts with determining requirements and features, followed by
implementation and testing.

Prior research [6, 7, 19, 25, 31, 44] generally identified three
categories of prototyping models: Exploratory, Experimental, and
Evolutionary Prototyping, tailored to different stages of application
development. These models perform well for GUI applications, but
the functional requirements brought by multimodal user input are
likely to go beyond the visual elements of the interface itself. Faced
with the uncertainty of requirements in multimodal applications,
these models may struggle to help developers complete the pro-
totyping of multimodal applications. Bourguet [11] attempted to
use a Finite State Machine (FSM) to build prototypes of multimodal
applications, but the multimodal inputs, such as voice input and
clicks, also need to be anticipated by developers in advance, which
is difficult given the flexible nature of multimodal interactions.

Therefore, we need a method to gather possible user input, un-
derstand what features are required, and present this information
in a concise way to developers. Also, all of the above should be
performed as early as possible in the development process. Ge-
nieWizard simulates the user input-gathering process by using an

LLM-powered pipeline that only requires a skeleton of the state
code 3 , which can be created early in the implementation process
before any UI code or a functioning implementation. GenieWizard
then analyzes the required features using its zero-shot parser and
dry run utilities to convert simulated user inputs to a list of required
code elements. Finally, GenieWizard provides concise feedback for
developers.

2.2 UI Development Feedback Generation with
AI

GenieWizard suggests features for multimodal apps to improve the
user experience. There has also been some recent work using large
language models for testing GUI design and implementation and
generating feedback. Liu et al. [42] used LLMs for zero-shot human-
like interaction generation for detecting crashing bugs triggered
by GUI actions. Duan et al. [23] automated heuristic evaluation of
UI designs by feeding an LLM with prompts containing the design
guidelines and the UI representation.

Prior work has yet to explore providing feedback on multimodal
app development, and generating feedback for such development is
more challenging than generating feedback for GUI development.
First, no design guidelines are currently available for conducting
heuristic evaluations on multimodal apps. Second, the flexibility of
user actions possible in multimodal apps makes the potential set
of user interactions that should be supported significantly larger
than those in GUI apps. GenieWizard tackles these challenges by
simulating user actions to bootstrap the feedback process when
heuristic evaluation is not feasible. It also leverages persona genera-
tion techniques to cover a wide range of user types in the simulated
actions. This allows GenieWizard to generate possible user com-
mand suggestions based only on the skeleton of the app’s state code
before developers write functioning implementations.

3State code, in the context of GUI development, refers to the part of the application
that manages the data and the logic that determines the state of the user interface.

GenieWizard: Multimodal App Feature Discovery with Large Language Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan

2.3 AI-assisted Developer Tools
The past decade has seen a large body of literature about building de-
veloper tools using AI [29]. Below, we summarize major AI-assisted
developer tools, synthesize the evolution of AI techniques used to
build these tools, and highlight the novel techniques proposed by
this work for integrating LLMs into developer tools.

Earlier work on developer tools used traditional machine learn-
ing techniques, including supervised and unsupervised methods.
For example, Lal and Pahwa [38] used Decision Trees and Support
Vector Machine (SVM) models to predict if certain code contained
bugs, helping with code review. Nucci et al. [49] used source code
metrics, historical data, and manual annotations to train Naive
Bayes and J48 probabilistic models to identify bad coding practices.
Bader et al. [5] used documented software bug fixes from code-
bases to power a hierarchal clustering algorithm that identifies
bugs in programs and suggests possible bug fixes in a ranked order
based on probability. More recent research applies deep-learning-
based approaches to building developer tools. These approaches
not only allow for better performance in detection tasks but also
further enable more novel generation tasks, such as UI generation
and documentation generation. Generative Adversarial Networks
(GANs) have been researched to improve and automate the process
of designing graphical layouts [41, 62]. LayoutTransformer [28]
and GUILGET [63] are self-attention-based transformer models
that generate and complete design and UI layouts. Jing et al. [34]
uses variational autoencoders (VAE) to generate layouts for various
product listing pages encountered in mobile shopping applications.
Khomh et al. [36] presents a deep neural network that analyzes
the structural information of Java methods for code comments
generation.

Pre-trained LLMs have the potential to empower more innova-
tive AI-assisted developer tools. Given their code analysis ability
and flexible text-based interaction paradigms that support both
human languages and programming languages, off-the-shelf LLM-
powered chatbots are used by developers to comprehend, write,
and debug code. Some researchers have further developed LLM-
powered tools that support code understanding [45], the informa-
tion searching and foraging process [12], code generation based
on conversational interactions [58], translating natural language
commands to domain-specific language code [68], as well as soft-
ware testing tasks [67] such as unit test generation [39], test input
generation [69], and program repair [53]. In addition, systems have
been developed to assist writers in providing feedback during their
writing process [8, 20].

GenieWizard has similarities with other LLM-powered software
testing tools in that it also helps developers identify and fix issues
in the code. At the same time, the novel pipeline it proposes differ-
entiates it from other LLM-powered developer tools that primar-
ily leverage the model’s code knowledge. Combining the model’s
commonsense reasoning and code knowledge automates the en-
tire process, from simulating user behaviors to suggesting missing
function code signatures for programming multimodal interactions.
We envision this pipeline will enable a new paradigm of AI-based
developer tools, which we discuss later in this paper.

2.4 Multimodal App Development Frameworks
Multimodal app development is a challenging task. Before LLMs
became widely accessible, researchers had created development
frameworks to facilitate the implementation of specific voice com-
mands on top of a GUI. Sarmah et al. [60] developed a tool for adding
the voice input modality to existing web apps without requiring
significant NLP expertise. However, it only supports template-based
matching of multimodal commands (e.g., “add <song name> to the
playlist”), and each individual command needs to be added sepa-
rately. This not only increases the development cost, but also does
not fully realize the potential of achieving flexibility, efficiency, and
adaptability with multimodal interactions.

With LLMs, researchers have proposed novel programming
frameworks to streamline the implementation of multimodal apps
that can generalize from a small number of examples to a large set
of commands. Wang et al. [66] explore a generalizable approach to
adapt an LLM to mobile UIs to support conversational interactions
with the UIs. In our prior work, we [68] proposed a pipeline to
translate human voice commands to DSL code that can compose
the app functions exposed by the developers to support flexible
user intentions.

While this recent work has addressed the barrier to implement-
ing a large set of multimodal commands, another significant issue
remains unsolved: it is difficult to determine a comprehensive set of
functions to implement for supporting the multimodal commands
in the code. GenieWizard tackles this problem by analyzing an
early version of the code to infer the required functions that can
cover common interactions for varied types of users. It also helps
developers prioritize suggested features based on their relevance
and potential impact on the user experience. This feature ranking is
crucial as it guides developers on which functionality to implement
first, optimizing the development process and resource allocation.

2.5 Multimodal Interactions with AI Models
While apps such as ChatGPT [50] or Google Gemini [26] support
multimodal input and output (typically images and text), they work
best for general knowledge questions. People have also tried to
make an AI model that allows a user to give voice commands
and emulates user clicks/keystrokes as input to a traditional GUI
app [2, 66]. While these solutions are easier to code, they suffer
from mistakes and the inability to integrate actions on different
screens [66]. Another solution is to allow an LLM to generate in-
terfaces on the fly [65] according to the user’s command. However,
it is harder to make an app conform to a consistent look and feel
and this is also more prone to LLM generation errors. Therefore,
GenieWizard is based on a more traditional software development
process to help developers implement more features to deliver a
more usable first iteration of an application that has reliable features
and a consistent look and feel.

3 GenieWizard System Design
The goal of GenieWizard is to help developers reduce the “unsup-
ported” errors in their multimodal apps by suggesting features to
implement. In a simplified software engineering development life-
cycle [3, 59], designers first create prototypes of an app to verify
its features and make improvements. Designers then make design

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Jackie (Junrui) Yang, Yingtian Shi, Chris Gu, Zhang Zheng, Anisha Jain, Tianshi Li, Monica S. Lam, and James A. Landay

specifications from that process and present them to developers.
Developers implement logic (state code) that supports all the fea-
tures and then implement a UI (UI code) that renders information
present in the logic in a way that conforms to the design specs.
Finally, the app can be tested by end-users through app user testing.

However, with the introduction of multimodal interactions, pro-
totyping is much harder for designers. For GUI apps, there are many
tools to help designers make partially-functioning prototypes that
will respond to a user’s clicks for testing. Additionally, designers
have less ambiguous representations of the design specifications,
usually via a graphical storyboard. When developers implement
the app to behave exactly like the graphical storyboard, users have
a higher chance of having the user experience intended by the
designers. However, to create design specifications for multimodal
apps, designers must carry out laborious Wizard-of-Oz studies [37]
to simulate the system to respond to various multimodal commands
and learn the users’ desired commands. This is due to the fact that
the GUI interaction space is usually limited, i.e., if there are five
buttons on a screen, there are only five possible interactions that
must be pre-programmed. Multimodal interaction involves not only
a large number of actions available on almost every screen but also
the exponential number of possible combinations of these actions
and references to objects on the screen. Developers must also un-
derstand the mapping between user commands and the required
properties, functions, and classes to implement them.

In the following, we first give an overview of the multimodal
interaction framework ReactGenie (which GenieWizard is based on)
and then introduce the reader to the multimodal feature discovery
problem GenieWizard is trying to solve. This is followed by an
overview of the GenieWizard system and the details of the three
key stages in the GenieWizard pipeline.

3.1 Overview of the ReactGenie Framework
To familiarize the readers with multimodal apps, we first describe
the ReactGenie framework [68], a state-of-the-art multimodal app
framework that supports arbitrary combinations of GUI actions
and API calls via voice commands. Our GenieWizard prototype
is developed on top of ReactGenie. ReactGenie streamlines the
creation of multimodal mobile apps by allowing developers to focus
on implementing the app features and the GUI without having to
handle each possible multimodal intention manually.

3.1.1 The developer interface. As shown in Figure 3, the devel-
oper simply defines the state code, which contains classes with
properties and functions that define the app’s features. Only prop-
erties annotated with @GenieProperty and functions annotated
with @GenieFunction will be exposed to the multimodal runtime.
Hence, developers can prevent the internal helper functions and
properties from being exposed to the user by simply not annotat-
ing them, e.g., reserveRoom() and imageUrl. The developer then
defines the UI code, which can be typical React4 code that renders
the GUI based on the state code.

The developer also needs to provide a set of few-shot examples
of how natural language commands are to be translated into correct
ReactGenieDSL code from user commands. For example, as shown

4https://react.dev/

in Examples in Figure 3, the sentence “I want to book this room till
the end of the week” is represented in ReactGenieDSL as

Room.Current().bookRoom(startDate: DateTime.
today(), endDate: DateTime.today().setDayOf
TheWeek(day: DateTime.Sunday))

ReactGenieDSL is a DSL designed to support the composition of
GUI actions and developer-provided functions in a syntax that is
easy to translate from natural language.

Notice that in this example, a special function that is not required
to be provided by the developer is the Room.Current() function.
This function supports the user’s multimodal deictic touch gesture.
ReactGenie provides this function by understanding what object in
memory is mapped to the user’s click point (x,y) using the devel-
oper’s UI code. This function then returns the same object under
the user’s touch point. In this way, the user can refer to the object
that they are tapping in their multimodal commands.

3.1.2 ReactGenie Framework. ReactGenie uses the developer-
supplied examples of translations from English to ReactGenieDSL,
along with the extracted state code function signatures, to create an
LLM-based semantic parser that turns user utterances into React-
GenieDSL code. When a user issues a command, ReactGenie uses
the semantic parser to turn the command into ReactGenieDSL code.
The ReactGenieDSL interpreter executes the command within the
context of the developer-provided state code. The execution will
automatically update the state and trigger a re-rendering of the
relevant GUI. ReactGenie further analyzes the execution result and,
depending on the result, optionally composes a GUI interface using
developer-provided UI code to display the result to the user. Parallel
to the GUI rendering, ReactGenie also generates a text response
using human-readable descriptions of the execution result.

3.2 The Multimodal Feature Discovery Problem
The problem GenieWizard attempts to address is the following:
Given a prototype of a multimodal app, propose a set of new
programming features to implement so that typical end-user
requests can be satisfied.

To illustrate the complexity of this problem, let us consider the
example of a functional food-ordering GUI app. Suppose the app
provides information about each food item, including ingredients,
on an item detail page. An app implementing the GUI may simply
have a text field called Food.description. A user would like to
avoid peanuts because of allergies, so they ask, “Show me all the
food that doesn’t contain peanuts.” To handle this request, we need
to add a Food.ingredients field and translate the command to
Food.All().ingredients.notContains(item: "peanut").

In a traditional development lifecycle, such a problem might
only be detected at the software usability testing phase. Our prior
work [68] showed that a multimodal app developed with the Re-
actGenie framework still leaves 41% of the commands desired by
users unsupported by the study participants’ implementations. As
demonstrated by [43], the portion of unsupported commands af-
fects people’s willingness to use the system and makes early testing
of multimodal systems in the wild infeasible.

https://react.dev/

GenieWizard: Multimodal App Feature Discovery with Large Language Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan

@GenieClass("A room item")
export class Room extends DataClass {

@GenieKey
public id: string;
@GenieProperty("the name of the room")
public name: string;
public imageUrl: string;
@GenieProperty("the hotel that that room belongs to")
public hotel: Hotel;
@GenieProperty("the price of the room")
public price: Decimal;
@GenieProperty("0-1, 1 being the most popular")
public popularity: float;

constructor({id, name, imageUrl, price, popularity}: …
 }

reserveRoom({startDate, endDate}: {startDate: DateTime, endDate:
DateTime}): boolean {

…
 }

@GenieFunction("check if this room is available for a specific period")
isAvailable({startDate, endDate}: {startDate: DateTime, endDate:

DateTime}): boolean {
…

 }

@GenieFunction("Show preview of booking of the room")
bookRoom({startDate, endDate}: {startDate?: DateTime, endDate?:

DateTime}): Booking {
 …
 }

static Examples = [
 {

"user": "I want to book this room till the end of the week",
"parsed": "Room.Current().bookRoom(startDate: DateTime.today(),

endDate:DateTime.today().setDayOfTheWeek(day: DateTime.Sunday))”,
 }
];
}

const RoomItemViewImpl = (obj: Room) => {
return (

 <Pressable
style={common.cardContainer}
onPress={() => {
const orderItem = Booking.CreateBooking({
room: roomItem});

AppNavigator.push("BookRoom", orderItem);
 }}
 >
 <View style={common.card}>
 <Image source={{ uri: roomItem.imageUrl }} style={common.card} />
 </View>
 <View style={common.content}>
 <View style={common.spacebetween}>
 <Text style={common.title}>{roomItem.name}</Text>
 <Text style={common.title}>{roomItem.price.toString()}</Text>
 </View>
 </View>
 </Pressable>
);
};

export const RoomItemView = GenieClassInterface("Room",
 (roomItem) => `${roomItem.name} Room`)(RoomItemViewImpl);

State Code

UI Code

Voice

Touch

Semantic Parser
ReactGenieDSL

Interpreter

UI Mapping

Response
Generation

Generated UI

Text Response

Execution result

ReactGenie Runtime

Figure 3: ReactGenie [68] System Overview: GenieWizard is built upon the state-of-the-art multimodal app implementation
framework ReactGenie. ReactGenie offers a basis for implementing multimodal apps when the required functions are known,
so with GenieWizard we focus on detecting missing functions and generating suggestions.

3.3 Overview of GenieWizard
GenieWizard assists in multimodal feature discovery by bridging
the gap between the design and implementation of multimodal
apps. This tool simulates user testing in the early implementation
phases so that the developers can improve their implementation
rapidly without going through the full software engineering life
cycle. To achieve this, GenieWizard decomposes the problem into
these stages.

(1) Simulate User Interactions: Simulate the user’s multi-
modal interactions with the app based on the early version
of the state code (e.g., an incomplete implementation, with-
out few-shot examples).

(2) Speculate on Missing Features from Interactions: An-
alyze the generated user interactions and speculate on the
missing features in the limited state code.

(3) Suggest Features to Implement During Development:
To help the app developers using the GenieWizard sys-
tem, GenieWizard suggests features and keeps track of the
progress of the implementation for the developers in a con-
venient way.

3.4 Simulate User Interactions
Prior work on app development feedback typically uses a set of
heuristic rules to provide suggestions for the designers and the
developers [1] and/or retrieving similar designs to help developers
make their design [1, 12]. However, given that there are not many
existing multimodal apps, it is hard to build a set of heuristic rules
or retrieve similar designs. GenieWizard takes a different approach.
We simulate user interactions with the app using LLMs, similar to
prior work on using LLMs to simulate social behaviors [1, 52].

The goal is to simulate diverse user behaviors that invoke unim-
plemented actions related to the app. The user interaction simula-
tion is listed in the four blocks on the left of Figure 2.

First, we prompt the LLM with the extracted function signatures
in the app’s state code to generate a brief one-sentence descrip-
tion of the app. This description is used to confine the generated
interactions to be related to the app but not specific to the exist-
ing implementation. The description can be further edited if the
developer intends for a specific use case.

Second, to create diverse behaviors, we create a set of personas
that represent different types of users. Targeting the US demograph-
ics, we created a system that can automatically generate profiles

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Jackie (Junrui) Yang, Yingtian Shi, Chris Gu, Zhang Zheng, Anisha Jain, Tianshi Li, Monica S. Lam, and James A. Landay

representative of the occupation, gender, age, and name distribu-
tions of a US population from data collected from the US Census,
Social Security Administration, and Bureau of Labor Statistics. To
guide the persona’s behavior, GenieWizard also prompts the LLM to
imagine a scenario for each profile, including a specific task related
to the app description that a user fitting that profile may want to
do.

Third, to simulate real-world usage, we prompt the LLM for an
interaction dialog between the user and the app using the persona,
scenario, and app description. We prompt the model to simulate
the app by providing a textual response and a description of what
is being rendered on the screen to simulate the feedback from an
actual multimodal interaction process.

Lastly, we extract the simulated user utterances from the result-
ing dialog and use it as a set of user multimodal commands that
should be supported by the app.

3.5 Speculate on Missing Features from
Interactions

GenieWizard’s second stage is to derive the features needed to
support the simulated user multimodal commands. Note that we
do not simply map each user’s command into a single API call.
The expressiveness of ReactGenieDSL can support many possible
commands with a set of given fields and APIs. For example, it has
sorting and filtering functions, and combinations thereof at its
disposal. Therefore, given the location and price for each hotel,
ReactGenieDSL can generate code to find the cheapest hotel in a
location, or the closest hotel within a price range. Figuring out the
features to add is thus nontrivial, and cannot be handled solely by
an LLM.

3.5.1 Speculative parsing. To tackle this problem, we use an LLM-
based neural semantic parser to translate user requests into React-
GenieDSL code. We prompt the parser to speculate and use new
APIs if none of the provided APIs suffice. We refer to this technique
as speculative parsing. All speculated APIs are potential features to
implement.

3.5.2 Zero-shot neural semantic parser. The semantic parser in Re-
actGenie requires the developer to provide some few-shot example
pairs of user conversation and corresponding ReactGenieDSL. Not
only is this tedious, but these examples must be updated whenever
the code is changed, and it is not possible to supply these descrip-
tions for newly speculated APIs. Thus, it is desirable to create a
zero-shot parser, which requires no examples of how each API is to
be used.

Through experimentation with prompts, we observed a zero-shot
parser already performs quite well because of the familiar syntax
of ReactGenieDSL and the presence of the function signatures of
available functions in the prompt. However, there are problems
with some unique design choices in ReactGenieDSL that caused
some syntax errors, including the removal lambda expressions [22]
and pervasive use of method chaining [27] (see the details in the
ReactGenie paper [68]).

Our solution is to teach the LLM-based semantic parser the
unusual syntactic design of ReactGenieDSL using a small app. Ge-
nieWizard provides, as a fixed preamble to the LLM prompt, a small

predefined app’s declaration of functions, few-shot examples of
that app, and some tips for generating correct ReactGenieDSL code.
The prompt then includes function declarations extracted from the
developer’s app without any app-specific examples. We evaluated
the accuracy of this zero-shot parser in Section 5.2.

3.5.3 Feature identification. As shown in the center two blocks
in Figure 2, our next step is to analyze the parsed ReactGenieDSL
code, which may contain unimplemented functions, to understand
what specific features are missing. Similar to in previous sections,
the feature we mean here is a specific class, function, or property
that the developer can add to support the unsupported command.
We want to do this in a way that does not require the developer to
provide a fully working implementation of the app, so we cannot
call any of the developer’s functions to get a result.

We use the concept of abstract interpretation [21] in program
analysis to identify the missing feature. The idea is to execute the
code abstractly by just computing the types in the program. Because
ReactGenieDSL is strongly typed, we can abstract out the implemen-
tation of a function by using its signature. We refer to the process
of using abstract interpretation to identify missing functions as
a “dry run.” We built a version of the ReactGenieDSL interpreter
that “dry runs” the generated commands and outputs the first en-
countered classes, functions, or properties the developer has not
yet declared. Using the ReactGenieDSL code Room.All().price
as an example, GenieWizard’s dry run module will first find the
class name Room and its properties and functions. Then, it will
find the function Room.All. Rather than calling the function that
may not be fully implemented yet, it will directly check the return
value type, which is Room[]. Finally, it will try to find the property
price in the room class. In this case, if the property is not found,
it will output a dry run error along with the missing app feature
(class/property/function) mentioned in the app.

Note that once the parser reaches the first unimplemented fea-
ture, it cannot speculate any further because the system does not
have the missing feature’s type information. We found in our test-
ing that the majority of unsupported commands only require one
missing feature.

3.6 Suggest Features to Implement During
Development

We discovered through experimentation that the user simulation
can often generate around a hundred unsupported commands per
app. If this directly translates to an equal number of missing features,
it would be overwhelming to show all of them to the developer.

One naive approach is to group the same missing
classes/properties/functions together by name and only show one
of them to the developers. However, under different generated
commands, the same feature may be implemented using different
functions (e.g., hotel’s review score can be implemented as
Hotel.rating or Hotel.reviewScore). In some cases, different
features may be speculatively parsed into the same function
(e.g., the user’s user ID and the user’s identification document
can be parsed to User.ID). These are caused by the fact that the
missing classes/properties/functions names alone are not enough
to represent what the feature is for.

GenieWizard: Multimodal App Feature Discovery with Large Language Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Newly
Implemented

Features

Progress Tracker

Suggested
Features

Corresponding
ReactGenieDSL
Commands

(Mouse Hover)
Generated User
Utterances

Suggested
Classes/
Properties/
Functions

Figure 4: GenieWizard IDE Plugin: The GenieWizard IDE plugin provides developers with feature suggestions in the same place
where they are writing code. It can provide suggestions of potential unsupported features through a list of suggested functions
(unique features). Under each suggested function, developers can see the generated parsed commands in the same group. By
hovering the mouse over a parsed command, developers can see the original generated user utterance to better contextualize
the feature they are implementing. They can set goals by clicking on each unique feature, and a checkmark will appear next to
it. While working on the implementation, checkmarks will appear next to the parsed command to indicate a generated user
utterance that is now supported. The IDE also renders a progress tracker showing the percentage of commands implemented,
the percentage of commands marked as will support, and the percentage of unmarked commands.

To solve the problems with this naive approach, we first pro-
vide the originally generated command, the parsed ReactGenieDSL
code, and the missing feature to the LLM and ask it to generate a
brief description of the missing feature in the form of a comment
(User.ID // The user’s identification document). This pro-
cess is illustrated in the rightmost block in Figure 2. We then cluster
the generated commands using agglomerative clustering with the
cosine distance between the embedding vector of the feature and
description to form a list of clusters of unique features [24] (shown
in Figure 4). We show each cluster’s representative feature to the
developer and list every ReactGenieDSL statement in that category
below it.

To provide better context, the developer can hover above a React-
GenieDSL statement to see the originally generated user utterance
that parsed to this statement. To further help the developer keep
track of the implementation progress, we also provide a progress
tracker that shows the percentage of the missing features that have

been implemented, along with which commands are implemented
and which are not. Developers can click on the features they would
like to implement, and the plugin will automatically re-parse the
generated user utterance under that category when it detects a
function signature change in the state code. It will keep track of
the developer’s progress and show their live progress in the IDE
interface.

4 Implementation
We built a Python Flask server that handles every part of the Ge-
nieWizard pipeline except for the speculative parser, which has to
be implemented using a TypeScript environment where the devel-
oper’s state code is written. We used OpenAI GPT-3.5-turbo for
everything to save on inference costs and increase responsiveness
except for the app description generation, for which we used GPT-4
because we found GPT-3.5-turbo frequently generates irrelevant

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Jackie (Junrui) Yang, Yingtian Shi, Chris Gu, Zhang Zheng, Anisha Jain, Tianshi Li, Monica S. Lam, and James A. Landay

app descriptions. We chose to generate 40 personas + scenario com-
binations and asked the model to produce 9-18 conversation turns
for each. These parameters were chosen based on empirical results
to establish a balance between speed and suggestion quality, and the
resulting performance was systematically evaluated in Section 5.3.
The model does not always follow the conversation-turn require-
ments we gave. After filtering out out-of-scope commands, such as
“open the app”, using empirically-designed regular expressions, the
system generates 410 potential user commands every time from
the 40 personas + scenarios. Each time the developer requests a
new feature discovery process, the entire utterance generation task
costs around 0.03 USD to run, the missing feature speculation task
costs around 2.5 USD5 , and the clustering task costs 0.01 USD.
This cost is relatively low compared to the labor cost6 , so many
developers can adopt it from a financial perspective.

Separately, we implemented a VS Code Plugin as the developer’s
user interface for the GenieWizard IDE in TypeScript.

5 Evaluation
We conducted evaluations on three major parts of the GenieWizard
system: 1) the zero-shot parser, 2) the utterance generation pipeline,
and 3) the suggestion generation and IDE user interfaces. To facili-
tate the evaluation, we also built two example multimodal apps for
developers to improve upon in a user study.

5.1 Example Apps for the Evaluation
We built two example apps for the evaluation: a food menu ordering
app and a hotel booking app. The food menu app is a web app
that allows users to browse food options, place an order, and keep
track of the food’s progress until it reaches the customer’s table.
The hotel booking app is a web app that allows users to book
hotels by selecting from/to dates and the number of guests, viewing
availability, and creating bookings. We built both apps with a simple
GUI implementation with functions for rendering content on the
GUI with the ReactGenie framework (see Figure 5). These apps
have a basic state code implementation to represent early versions
of commercial apps.

We conducted an IRB-approved crowd-based elicitation study
similar to that described in our previous work [68] to create a gold
standard for missing app features. We showed screenshots of the
app being tested and asked people to demonstrate how they would
interact with the app multimodally (see Figure 5). We improved
upon our previous work’s methodology by making the interface
accept voice and touch interaction inputs instead of using text
to simulate voice input. This is because, in our pilot study, we
found that text-based input frequently limited user interactions to
relatively short and simple voice commands due to the high cost of
typing, while using voice recognition better simulates a real-world
multimodal interaction environment.

The two apps we built represent common app categories that
people frequently use (e.g., food menu apps — Toast/Yelp, and hotel
booking apps — Hotels.com). We try to use simple screenshots to
elicit questions based on participants’ experiences with apps in

5This can be further reduced to approximately 0.8 USD by using the latest GPT-4o
mini model.
6The US country-wise minimal wage at the time of writing is 7.25 USD.

the same category. For example, many people asked about room
amenities even if they were not present in our test app screenshots.

We recruited 40 participants (20 male and 20 female) on the
research recruitment platform Prolific for each app and filtered
out attention check failures and some entries where people mis-
understood the task (several participants treated the interface as
a regular GUI app and the voice interface as a feedback recorder).
Each survey submission took around 7 minutes to complete, and
we paid each participant 1.4 USD. We gathered 298 user utterances
for the hotel booking app and 367 for the food ordering app.

5.2 Zero-Shot Parser Performance
The goal of the zero-shot parser is to parse generated and end-
user commands to generate the correct ReactGenieDSL code and
speculate on the missing features (classes/properties/functions)
for unsupported commands, all without requiring the developer
to provide example user command-ReactGenieDSL pairs. In this
way, the zero-shot parser can be used both as a component in the
app used by end-users and as part of GenieWizard’s pipeline. In
this section, we will measure the accuracy of a few variants of the
zero-shot parser we created and compare them against the few-shot
parser from our prior work [68].

5.2.1 Measures. We would like to know what percentage of the
parsed DSL from each parser is semantically and syntactically cor-
rect. Syntactically, the DSL is checked using the ReactGenieDSL
interpreter’s syntax check. Semantically, for supported commands,
the DSL has to use the right functions and achieve what the user
wants. For unsupported commands, the function speculated by
the parser has to fulfill the user’s request, and assuming that the
speculated function exists, it has to achieve what the user wants.

Notably, there may be different ways to satisfy the user’s
request, and we would consider all of them correct. For ex-
ample, if the user asks “Recommend me a main dish.”, that
can be translated to either FoodItem.All().matching(field:
.menuSection, value: MenuSection.GetMenuSection(name:
"main dish")).sort(field: .price, ascending:
true)[0] or MenuSection.GetMenuSection(name: "main
dish").getFoodItems().sort(field: .rating, ascending:
false)[0]. Although the former and the latter use different
functions to retrieve the main dish, they are both correct. As for
the recommendation, the former recommends a low-price option,
and the latter recommends a high-rating option, both of which
fulfill the user’s desire.

5.2.2 Procedure. We created three variants of our zero-shot parser
with GPT-4, GPT-3.5, and Codex7 . We used ReactGenie’s few-shot
parser8 built with Codex as a baseline for comparison. We randomly
sampled 50 utterances from the user commands elicited for the food
menu and hotel reservation apps, giving 100 utterances in total.

7OpenAI Codex model (code-davanci-002) has about a one-call-per-second rate limit
on OpenAI’s endpoints. Azure OpenAI API has much higher rate limits, but their
Codex model is 20-30 times as expensive as GPT-3.5 and 2-3 times as expensive as
GPT-4, making the cost prohibitive. This makes the Codex model infeasible for testing
several hundred generated utterances.
8For the main study, our app was developed without the few-shot examples. To test the
few-shot Codex parser, we temporarily added seven examples for each app to produce
the few-shot parser results for comparison.

https://Hotels.com

GenieWizard: Multimodal App Feature Discovery with Large Language Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Food Menu App Hotel Booking App Elicitation Study Webpage

Figure 5: GenieWizard Example Apps and Elicitation Study Interface. We built two example apps for developers to improve
upon: a food menu ordering app and a hotel booking app. We conducted an elicitation study with a multimodal command
collection interface to collect possible real user commands for both apps.

Category Zero-shot GPT-4 Zero-shot GPT-3.5 Zero-shot Codex Few-shot Codex
Total (100) 77% (77) 69% (69) 80% (80) 72% (72)
Supported (64) 90% (56) 84% (52) 90% (56) 89% (55)
Unsupported (36) 55% (21) 45% (17) 63% (24) 45% (17)

Table 1: Parser Accuracy: We compared GenieWizard’s zero-shot parser implemented on GPT-4, GPT-3.5, and OpenAI Codex
(expensive and slow) with the few-shot Codex parser implemented in ReactGenie [68]. The results showed that the zero-
shot GPT-4-based and zero-shot GPT-3.5-based parsers perform similarly to the few-shot Codex-based parser on supported
commands. On unsupported commands, all GenieWizard models match or surpass the few-shot Codex model.

5.2.3 Results. As shown in Table 1, our zero-shot parser demon-
strated an accuracy similar to that of a few-shot Codex parser
(90%) on supported commands (64% of total commands), indicating
that our new zero-shot prompt is effective at understanding users’
requests while reducing development costs. For unsupported com-
mands (36% of total commands), all three zero-shot models have
superior or similar performance compared to the few-shot parser.
This is likely because we actively encouraged missing feature gener-
ation (speculative parsing) in the newly designed zero-shot prompt.
Moreover, all parsers performed worse on unsupported commands
than on supported commands. This is expected since the parser
must consider the missing feature while parsing the user input.

Among the zero-shot parsers, the GPT-3.5-based parser has much
lower costs, lower latency, and reasonable accuracy, so we selected
that as the model to use in the final tool.

In the following evaluations, we need to find unsupported com-
mands in elicited user commands. The parser can be actually used
as a filter for possible unsupported commands. If the parser gen-
erates a syntax error or there is no syntax error but it refers to a
non-existing class/property/function (discovered through the dry
run), we treat it as potentially having unsupported commands, and
we can then manually inspect it. Due to Codex’s high price and low
throughput, we used zero-shot GPT-4 as the model to do the initial

filter. We evaluated the accuracy of this method as the indicator
of potential unsupported commands. This method achieved 81%
precision and 68% recall.

5.3 Generation Pipeline Performance
The goal of the utterance generation pipeline is to generate fea-
ture suggestions that can cover a broader range of user-desired
commands that are currently unsupported. We would like to know
what proportion of real users’ unsupported command types we can
discover using our pipeline.

5.3.1 Measures. To evaluate the utterance generation pipeline,
we would like to know the percentage of real users’ unsupported
commands that can be covered by GenieWizard’s pipeline versus
simply prompting GPT-4 to generate feature suggestions using the
same code skeleton and app description as context.

Specifically, we would like to extract unsupported commands
in the real-user datasets we collected from the elicitation study
described in Section 5.1, and see if these commands can be covered
by commands generated by the two different systems (GenieWizard
or prompting GPT-4). We define distinct groups of commands as
commands that can mutually be supported by the app by adding a
single class/property/function. We consider a group of real users’

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Jackie (Junrui) Yang, Yingtian Shi, Chris Gu, Zhang Zheng, Anisha Jain, Tianshi Li, Monica S. Lam, and James A. Landay

0 5 10 15 20 25 30 35 40
Number of Scenerios

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Co
ve

ra
ge

Food Ordering

GenieWizard Coverage

Direct GPT suggestions x 16

0 5 10 15 20 25 30 35 40
Number of Scenerios

Hotel Booking

GenieWizard Coverage

Direct GPT suggestions x 26

Figure 6: GenieWizard Pipeline Performance: GenieWizard automatically generated commands have high coverage over real
user-elicited commands. GenieWizard’s commands can cover 74% and 67% of the user-elicited commands of the food ordering
and hotel booking app, respectively. Prompting GPT-4 to generate the same number of suggestions can only generate 7% and
25% of the elicited commands.

commands covered if a system-generated suggested command also
belongs to the group. The higher the coverage, the better the system
is given the same number of suggestions/groups.

5.3.2 Procedure. To extract real users’ unsupported commands,
we used the aforementioned GenieWizard’s GPT-4-based parser
+ dry run filter to retrieve possible unsupported user commands.
We removed the supported ones and were left with 82 user-elicited
commands from the food ordering app and 60 from the hotel book-
ing app. We further labeled them collaboratively to reveal different
missing feature groups (i.e., each group could be implemented with
the same class/property/function). We found 19 groups of com-
mands for the food ordering app and 27 for the hotel booking app.

For GenieWizard’s generation pipeline, we generated user utter-
ances with 40 different persona and scenario combos. We extracted
117 generated commands for the food ordering app and 103 for the
hotel booking app. We then assigned generated commands that
belong to an existing group of user-expected commands to that
group and created new groups for commands that do not belong
in an existing group. In the end, we got 16 and 26 groups of gen-
erated commands for the two apps, respectively. Among them, 8
and 11 groups fall within the same groups as in the user-elicited
commands. Note that these groups have an uneven distribution of
commands, meaning that a few groups have a lot of commands
while many other groups have very few commands. As a result, the
coverage of GenieWizard for the food ordering app and the hotel
booking app are 74% and 67%, respectively.

As a comparison, we asked GPT-4 to also generate 16 and 26
features to add for both apps. Note that we limit the features to the
same number of groups that the GenieWizard pipeline generates
because each suggestion of GPT-4 is always in its unique group. In

this way, we are simulating the case where the developers received
the same number of suggestions directly from the LLM as in the
GenieWizard condition. The GPT-4-based suggestion only covers
7% and 25% of the user-elicited commands for the two apps.

To further evaluate the system’s performance when fewer per-
sona and scenario sets are used to save compute, we conducted
an additional experiment where we sampled randomly drawing a
subset of different numbers from the 40 persona + scenario com-
binations and measured how much coverage of the total number
of unsupported commands we can achieve with a subset of what
we have generated. As shown in Figure 6, GenieWizard easily beat
direct GPT suggestions starting at only four persona + scenario sets.
This indicates the advantage of GenieWizard is that we can better
support the developer in bridging the gap between the supported
commands and the user’s desired intention space.

5.4 Developer Experience with GenieWizard
Plugin

To evaluate the efficacy of GenieWizard, we conducted an IRB-
approved user study asking developers (𝑁 = 12) to identify missing
functions of the two example apps (see Figure 5) with the regular
VS Code IDE9 as a baseline and compared it against what they
identified as missing when using our GenieWizard IDE.

5.4.1 Study Design. The study was facilitated using a remote desk-
top to ensure all participants completed the coding tasks in the
same environment. The experimenter first introduced the study
goals and explained study-related concepts such as multimodal

9Both have GitHub Copilot enabled to save the developer’s time.

GenieWizard: Multimodal App Feature Discovery with Large Language Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan

apps since most participants did not have multimodal development
experience.

As our participants are expected to modify ReactGenie apps dur-
ing the main tasks, we first provided a short tutorial to demonstrate
how to use ReactGenie by building a simple counter app. This task
helped familiarize our participants with the basic architecture of a
ReactGenie app, including state code, UI code, and code that links
UI and state code. In the main tasks, they mostly needed to add
functions to the state code, through doing so requires a more holis-
tic understanding of how the entire system works. The tutorial took
about 30 minutes to complete.

The main study process contains two multimodal app improve-
ment tasks with the goal of “optimizing these two multimodal ap-
plications using different methods to support as many multimodal
interactions as possible for the users” within a limited amount of
time (30 minutes for each app). In the two tasks, the developer used
a different tool (VS Code vs. GenieWizard IDE) on different apps.
We used a counterbalanced design to control learning effects due
to the order of the tools and the combinations of tools and apps.

Finally, participants were required to complete a post-study sur-
vey that included their demographic information, and they were
asked to fill out the SUS usability scale [13] and the NASA-TLX
cognitive load scale [30]. We recorded audio and the shared screen
during the entire process with the participant’s permission. Each
participant received a $50 gift card as compensation after the study.

5.4.2 Participants. We recruited 12 React developer participants
(8 males) by distributing the recruitment link using a convenience
sample. Our participants include student developers and profes-
sional developers with an average age of 24.17 (𝜎 = 2.37). Three
participants had TypeScript development experience, and one de-
veloper had experience with ReactGenie.

5.4.3 Results. We labeled developers’ implemented features into
the same user-elicited command groups as above. As shown in
Table 2, the GenieWizard conditions resulted in a significantly
larger increase in the supported command coverage than with
the baseline condition (paired t-test, 𝑡 = 6.077, 𝑝 < 0.001). The
unsupported command reduction averaged 42%. The statistics in
Section 5.2 showed that, from the randomly sampled 100 commands,
our initial app prototypes provided to the developers support 64%
of the user’s commands (36% unsupported). Therefore, combining
these two statistics, the unsupported commands can be reduced by
36% × 42% ≈ 15%. In other words, developers with GenieWizard
can potentially increase the supported command percentage from
64% (about one in three user commands are unsupported) to 79%
(about one in five user commands are unsupported), which should
be noticeable from a user experience perspective. When looking
at the individual developer’s performance when using GenieWiz-
ard, only P7’s unsupported command percentage did not decrease.
We observed that this participant did not follow the suggestions
provided by GenieWizard but instead optimized both applications
according to their own ideas. The participant stated that although
GenieWizard provided good advice, they preferred to explore the
potential features of the application on their own.

GenieWizard also showed a higher level of usability and a lower
participant burden than the baseline. The participants’ mean SUS
score (see Figure 7, middle) for the GenieWizard plugin is 77.5

Participant ID Baseline GenieWizard
0 [Food] 19/233 (08%) [Hotel] 086/163 (53%)
1 [Hotel] 31/163 (19%) [Food] 125/233 (54%)
2 [Food] 07/233 (03%) [Hotel] 051/163 (31%)
3 [Hotel] 22/163 (13%) [Food] 113/233 (49%)
4 [Food] 00/233 (00%) [Hotel] 074/163 (45%)
5 [Hotel] 11/163 (07%) [Food] 081/233 (35%)
6 [Food] 12/233 (05%) [Hotel] 067/163 (41%)
7 [Hotel] 25/163 (15%) [Food] 000/233 (00%)
8 [Food] 30/233 (13%) [Hotel] 048/163 (29%)
9 [Hotel] 18/163 (11%) [Food] 155/233 (67%)
10 [Food] 33/233 (14%) [Hotel] 070/163 (43%)
11 [Hotel] 19/163 (12%) [Food] 137/233 (59%)

Table 2: Comparison of Baseline and GenieWizard on Help-
ing Developers Address Unsupported Features: The results
showed that GenieWizard, on average, can help developers
implement 42% of the unsupported actions compared to a
baseline IDE solution of 10%.

(𝜎 = 8.52). For the baseline, the mean score is 41.46 (𝜎 = 18.26).
GenieWizard’s SUS score is significantly higher than the baseline
(paired t-test, 𝑝 < 0.001, 𝑡 = 6.292), showing its better usability for
this task. The average NASA-TLX (see Figure 7, left) score from
participants with the GenieWizard plugin is 29.53 (𝜎 = 12.24).
With the baseline, the score is 60.49 (𝜎 = 13.27). The score of
GenieWizard is significantly lower than the baseline (paired t-test,
𝑝 < 0.001, 𝑡 = −5.145).

We used a seven-point Likert scale questionnaire to evaluate
whether the participants would use these tools in real life10 (see
Figure 7, right). The median Likert-scale rating (1-strongly disagree,
7-strongly agree) for GenieWizard and the baseline methods are 7.0
and 3.0, respectively. We found a statistically significantly higher
rating for GenieWizard than the baseline method (𝑊 = 0.000, 𝑝 =
0.003).

All participants expressed that their greatest difficulty in using
the baseline was not knowing what potential needs the end-users
may have and not knowing which features should be supported.
They hoped to have actual test cases to assist them in improving
the application. One participant even chooses to refer to other apps
to get inspiration. The participants agreed that GenieWizard can
help them improve their application quickly and efficiently. While
using GenieWizard, participant 1 said, “It provides me with various
insights from other users and then prevents 11 me from exhaustive
searching of possible user demands.”

However, some participants also found some parts of the inter-
actions simulated by GenieWizard to be difficult to understand. For
example, in one study session, a generated suggestion asks for a
specialRequest function for a food item. The participant in that
session found it hard to understand the requirements associated
with this suggestion. Furthermore, one participant wished that
GenieWizard not only provided suggestions but also helped them
implement some of the functions.
10The prompt is “Would you consider using this method to build multimodal application
in real life?”
11Note by authors: the participant probably meant “alleviates”.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Jackie (Junrui) Yang, Yingtian Shi, Chris Gu, Zhang Zheng, Anisha Jain, Tianshi Li, Monica S. Lam, and James A. Landay

Average

Temporal Demand
Frustration

Mental Demand

Effort

Physical Demand
Performance

0

20

40

60

80

100

TL
X/

SU
S

Sc
or

e

TLX Scores,
the lower
the better

Condition

GenieWizard

Baseline

SUS Score

SUS Scores,
the higher
the better

Use in real-life

2

3

4

5

6

7

Lik
er

t S
ca

le

**

Use in Real-life,
the higher
the better

Figure 7: Comparing mental load, usability, and participant preference of developing with GenieWizard compared to without
GenieWizard. An 𝑁 = 12 study has shown that GenieWizard induced less mental load (𝑝 < 0.001, 𝑡 = −5.145). It has also shown
GenieWizard is more usable for improving a multimodal app (𝑝 < 0.001, 𝑡 = 6.292). Participants also expressed willingness to use
GenieWizard in their real life. **: p < 0.01 ***: p < 0.001 ****: p < 0.0001

6 Discussion
The development of multimodal applications presents unique chal-
lenges due to the vast interaction space and the difficulty in antici-
pating user behaviors. Our work with GenieWizard demonstrates
the potential of AI-powered tools to address these challenges and
support developers throughout the implementation process. In this
section, we discuss our rationale for why we chose an API-level
suggestion scheme. Then, we discuss the implications of our find-
ings, contextualize GenieWizard within the broader landscape of
AI-assisted development tools for multimodal apps, and explore
the limitations and future directions of this approach. We begin
by examining how GenieWizard leverages AI to bridge the gap
between user expectations and developer implementations, then
consider the limitations of our current approach, and finally pro-
pose avenues for future research and development in this rapidly
evolving field.

6.1 API Level Suggestions vs. Concept Level
Suggestions

GenieWizard suggest features to developers in the format of APIs
to implement. An alternative method could be providing high-level
features (concepts) directly based on synthesized user interactions.
However, this alternative method will not work well for multimodal
interactions.

For multimodal interactions, there is not a one-to-one mapping
from user requests to app feature implementations (see Section 1.1).
The alternative method will not work because, multimodal apps
are unlike traditional GUI apps, where features are usually user
behaviors that the app supports through a series of controls. In
multimodal interactions, the developer’s code is composed together
to support a great variety of possible multimodal user requests, and
features can only be clearly defined at a lower level, i.e., function
level.

A typical user request, function call, and app feature look like
the following:

User request: What is the cheapest main dish that I have
ordered from this restaurant before?

Function calls: Order.All().filter(field: .restaura
nt, object: Restaurant.Current()).m
ainDishes.sorted(field: .price, asc
ending: true)[0]

Feature missing: Order.mainDishes

User requests are supported by composing different app features
together through a series of function calls. To understand whether
a user request is supported, we have to decompose the user request
down to the function call level to see if any functions are miss-
ing. At this point, proposing features as concepts vs features as
functional calls are equivalent. In fact, the GenieWizard proposed
function calls are only helping developers keep track of which user
requests can be supported by their implementation, even if they
implement them differently. For example, the above missing fea-
tures can also be implemented by adding a field to the Food class
called isMainDish, and GenieWizard can also keep track of the
implementation progress accordingly.

6.2 AI-powered Tools for Multimodal App
Development

The adoption of multimodal apps has been limited by the prohibitive
development efforts required to support the potentially exponential
number of commands users can ask. In other words, developers
need to write all the functions separately to support all the possible
user queries. Our prior research [68] alleviated this problem by
using LLMs to compose different features built by developers to
support users’ specific commands. However, the multimodal inter-
face means that users may expect features not originally built into

GenieWizard: Multimodal App Feature Discovery with Large Language Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan

the app, resulting in 41% of unsupported commands in ReactGenie’s
evaluations [68].

GenieWizard tries to address this unsupported command prob-
lem by using AI-powered tools. We have demonstrated that devel-
opers may only implement 10% of missing functions through their
common sense reasoning (Section 5.4). We also found that simply
prompting GPT-4 for feature suggestions can only cover 16% of
missing functions. Therefore, we need a better pipeline to simulate
user behavior and app responses, and give concrete, actionable
suggestions.

We built GenieWizard’s pipeline to start with the developer’s
program skeleton to support feature discovery early in the imple-
mentation phase. GenieWizard then generates possible user interac-
tions by sampling from user personas and simulating app behavior
through a text-based conversation using LLMs. GenieWizard fur-
ther identifies missing features in the generated commands and
clusters them to form actionable suggestions for developers. We
found GenieWizard’s suggestions can cover 71% of the missing
features in real user commands (Section 5.3).

To make developers’ lives easier, we present these suggested fea-
tures in an IDE plugin so that developers can see these suggestions
right where they write code. GenieWizard also presents relevant
user commands and parsed ReactGenieDSL lines to demonstrate
how these suggested features may be used. In addition, GenieWiz-
ard’s IDE plugin can show the percentage of generated commands
that are currently supported while the developer is changing their
code, giving them a more direct feeling of the progress they have
made. Overall, we demonstrated in Section 5.4 that developers
with GenieWizard can implement 40% of missing features in actual
users’ commands, which is a huge improvement over the 10% when
completing the same task without GenieWizard.

GenieWizard shows great promise for AI to help in the develop-
ment of multimodal apps. In addition to helping the program better
understand the user at run time, it can also help the programmer
better understand and support users at development time.

6.3 Limitations
One limitation of our evaluation is that the grouping process is
ambiguous in nature. For example, the customization of “crust” and
the customization of “toppings” can be implemented as two separate
functions (FoodItem.setCrust() and FoodItem.setTopping())
or a single function (FoodItem.addCustomizations()). We used
our experience in engineering apps with ReactGenie to select the
best implementation path for the grouping process.

Our pipeline generates personas from a general US population
distribution, and our survey is also limited to US populations.
Within the scope of the paper, we cannot be sure whether this
finding of high alignment between generated personas and target
population can be generalized to other sub-populations.

Another concern is the potential bias in LLMs [61] may skew the
generated commands and, therefore, steer the development of the
next generation of multimodal apps. In an early pipeline version,
we tried to ask the LLM to directly generate personas and scenarios.
However, we discovered that the LLM generated many male persona
named “James.” To mitigate this issue, we wrote a module to sample
user profiles according to a US representative population. There

may be more bias that is yet undiscovered in GenieWizard, so more
caution needs to be taken when using developer tools such as
GenieWizard.

6.4 Future Work
This paper demonstrated GenieWizard as a tool to improve multi-
modal apps. Recently, the voice assistant industry has also moved
towards using LLMs and API calling to implement voice chatbots.
Future work can investigate a similar user interaction generation
pipeline that may also be able to help chatbot developers implement
more APIs to improve chatbot user experiences.

Currently, we only tested using GenieWizard to help with the
first round in the app’s development lifecycle. We have not yet
tested the tool when an app has gone through a round of actual
user feedback and redesign and whether GenieWizard can still
provide benefits to the developer. Once there is an implemented
version of the app, future iterations with GenieWizard can also
consider how to take an already available UI into consideration to
generate more representative user utterances.

7 Conclusion
Multimodal interactions allow users to utilize an app in more flexi-
ble and efficient ways. However, this also raises the bar for devel-
opers to implement usable multimodal apps, as the space of user
actions can significantly expand now that the GUI does not con-
strain user actions. If the required functions are unimplemented, the
user experience may suffer. In this research, we aim to bridge this
gap by introducing a novel developer tool, GenieWizard. This tool
provides early feedback on the missing functions of a multimodal
app, enabling developers to receive auto-generated suggestions
that can cover a majority of user actions, even with just a basic
skeleton version of the app. The GenieWizard pipeline consists of
the following sequential components. First, GenieWizard gener-
ates user personas and simulates user actions (commands) based
on these personas. This helps bootstrap the design feedback pro-
cess in the absence of established design principles for multimodal
apps. Then, our zero-shot parser parses the simulated actions into
DSL code without any developer input. Finally, our dry run mod-
ule can automatically test the generated actions and commands
and offer suggestions about unsupported functions. Our evaluation
has demonstrated the strong performance of the different compo-
nents of the pipeline, as well as the end-to-end impact. This is best
represented by the significant increase in the number of missing
functions developers can identify and fix during a short lab study
session, showing that GenieWizard is both effective and usable.

Acknowledgments
We would like to thank the reviewers for their insightful feedback
and the participants of our user studies for their invaluable input.
We also want to acknowledge Meta Platforms, Inc., the Verdant
Foundation, and Stanford HAI for their generous financial support.
We are also grateful to Microsoft for providing Azure AI credits,
which have been instrumental in advancing our research.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Jackie (Junrui) Yang, Yingtian Shi, Chris Gu, Zhang Zheng, Anisha Jain, Tianshi Li, Monica S. Lam, and James A. Landay

References
[1] Gati Aher, Rosa I. Arriaga, and Adam Tauman Kalai. 2023. Using Large Language

Models to Simulate Multiple Humans and Replicate Human Subject Studies. In
Proceedings of the 40th International Conference on Machine Learning (Honolulu,
Hawaii, USA) (ICML’23). JMLR.org, Article 17, 35 pages.

[2] Adept AI. 2024. Adept: AI That Powers the Workforce. https://www.adept.ai/.
Accessed: 2024-08-23.

[3] Intakhab Alam, Nadeem Sarwar, and Iram Noreen. 2022. Statistical analysis of
software development models by six-pointed star framework. PLOS ONE 17, 4
(Apr 2022), e0264420. doi:10.1371/journal.pone.0264420

[4] Adel Alshamrani and Abdullah Bahattab. 2015. A comparison between three
SDLC models: waterfall model, spiral model, and Incremental/Iterative model.
International Journal of Computer Science Issues (IJCSI) 12, 1 (2015), 106.

[5] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–27. doi:10.1145/3360585

[6] D. Baumer, W. Bischofberger, H. Lichter, and H. Zullighoven. 1996. User interface
prototyping-concepts, tools, and experience. In Proceedings of IEEE 18th Interna-
tional Conference on Software Engineering. 532–541. doi:10.1109/ICSE.1996.493447

[7] Michel Beaudouin-Lafon and Wendy E Mackay. 2007. Prototyping tools and
techniques. In The human-computer interaction handbook. CRC Press, 1043–1066.

[8] Karim Benharrak, Tim Zindulka, Florian Lehmann, Hendrik Heuer, and Daniel
Buschek. 2024. Writer-Defined AI Personas for On-Demand Feedback Generation.
In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York,
NY, USA, Article 1049, 18 pages. doi:10.1145/3613904.3642406

[9] Barry W. Boehm. 1988. A spiral model of software development and enhancement.
Computer 21, 5 (1988), 61–72.

[10] Niall Bolger, Angelina Davis, and Eshkol Rafaeli. 2003. Diary methods: Capturing
life as it is lived. Annual review of psychology 54, 1 (2003), 579–616.

[11] Marie-Luce Bourguet. 2003. Designing and Prototyping Multimodal Commands..
In Interact, Vol. 3. Citeseer, 717–720.

[12] Paul Brie, Nicolas Burny, Arthur Sluÿters, and Jean Vanderdonckt. 2023. Evaluat-
ing a Large Language Model on Searching for GUI Layouts. Proceedings of the
ACM on Human-Computer Interaction 7, EICS (2023), 1–37. doi:10.1145/3593230

[13] John Brooke. 1996. SUS: A 'Quick and Dirty' Usability Scale. In Usability Evalua-
tion In Industry. CRC Press, 207–212. doi:10.1201/9781498710411-35

[14] Reinhard Budde, Karlheinz Kautz, Karin Kuhlenkamp, and Heinz Züllighoven.
1990. What is prototyping? Information Technology & People 6, 2/3 (1990), 89–95.

[15] W. Buxton, M. R. Lamb, D. Sherman, and K. C. Smith. 1983. Towards a compre-
hensive user interface management system. In Proceedings of the 10th Annual
Conference on Computer Graphics and Interactive Techniques (Detroit, Michigan,
USA) (SIGGRAPH ’83). Association for Computing Machinery, New York, NY,
USA, 35–42. doi:10.1145/800059.801130

[16] Bradley Camburn, Vimal Viswanathan, Julie Linsey, David Anderson, Daniel
Jensen, Richard Crawford, Kevin Otto, and Kristin Wood. 2017. Design proto-
typing methods: State of the art in strategies, techniques, and guidelines. Design
Science 3 (08 2017). doi:10.1017/dsj.2017.10

[17] Stuart K. Card, Thomas P. Moran, and Allen Newell. 1980. The keystroke-level
model for user performance time with interactive systems. Commun. ACM 23, 7
(July 1980), 396–410. doi:10.1145/358886.358895

[18] Mahil Carr and June Verner. 1997. Prototyping and software development ap-
proaches. Department of Information Systems, City University of Hong Kong, Hong
Kong (1997), 319–338.

[19] Mahil Carr and June Verner. 1997. Prototyping and software development ap-
proaches. Department of Information Systems, City University of Hong Kong, Hong
Kong, 319–338.

[20] Yoonseo Choi, Eun Jeong Kang, Seulgi Choi, Min Kyung Lee, and Juho Kim. 2024.
Proxona: Leveraging LLM-Driven Personas to Enhance Creators’ Understanding
of Their Audience. doi:10.48550/ARXIV.2408.10937

[21] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (Los Angeles, California) (POPL ’77). Association for
Computing Machinery, New York, NY, USA, 238–252. doi:10.1145/512950.512973

[22] cppreference.com. 2024. Lambda Expressions (since C++11). https://en.
cppreference.com/w/cpp/language/lambda. Accessed: 2024-08-23.

[23] Peitong Duan, Jeremy Warner, and Bjoern Hartmann. 2023. Towards Generating
UI Design Feedback with LLMs. Adjunct Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology (2023), 1–3. doi:10.1145/
3586182.3615810

[24] David Eppstein. 2001. Fast hierarchical clustering and other applications of
dynamic closest pairs. ACM J. Exp. Algorithmics 5 (dec 2001), 1–es. doi:10.1145/
351827.351829

[25] Christiane Floyd. 1984. A Systematic Look at Prototyping. In Approaches to
Prototyping, Reinhard Budde, Karin Kuhlenkamp, Lars Mathiassen, and Heinz
Züllighoven (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–18.

[26] Google. 2024. Google Gemini. https://gemini.google.com/. Accessed: 2024-08-23.
[27] Kasper B. Graversen. 2008. Method Chaining. First Class Thoughts, Web

Archive. https://web.archive.org/web/20110222112016/http://firstclassthoughts.
co.uk/java/method_chaining.html Accessed: 2024-08-23.

[28] Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry Davis, Vijay Mahade-
van, and Abhinav Shrivastava. 2021. LayoutTransformer: Layout Generation
and Completion with Self-attention. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV) 00 (2021), 984–994. doi:10.1109/iccv48922.2021.00104

[29] Mark Harman. 2012. The Role of Artificial Intelligence in Software Engineering.
2012 First International Workshop on Realizing AI Synergies in Software Engineering
(RAISE) 1 (2012), 1–6. doi:10.1109/raise.2012.6227961

[30] Sandra G. Hart. 2006. NASA-Task Load Index (NASA-TLX); 20 Years Later.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9
(October 2006), 904–908. doi:10.1177/154193120605000909

[31] Björn Hartmann. 2009. Gaining Design Insight Through Interaction Prototyping
Tools. Ph.D. dissertation. CS Department, Stanford University, Stanford, CA.

[32] Marc Hassenzahl and Noam Tractinsky. 2006. User experience-a research agenda.
Behaviour & information technology 25, 2 (2006), 91–97.

[33] John Hunt. 2006. Agile Methods and the Agile Manifesto. Springer, London, 9–30.
doi:10.1007/1-84628-262-4_2

[34] Qianzhi Jing, Tingting Zhou, Yixin Tsang, Liuqing Chen, Lingyun Sun, Yankun
Zhen, and Yichun Du. 2023. Layout Generation for Various Scenarios in Mobile
Shopping Applications. Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems (2023), 1–18. doi:10.1145/3544548.3581446

[35] Evangelos Karapanos, John Zimmerman, Jodi Forlizzi, and Jean-Bernard Martens.
2009. User experience over time: an initial framework. In Proceedings of the
SIGCHI conference on human factors in computing systems. 729–738.

[36] Foutse Khomh, Chanchal K Roy, Janet Siegmund, Xing Hu, Ge Li, Xin Xia, David
Lo, and Zhi Jin. 2018. Deep code comment generation. Proceedings of the 26th
Conference on Program Comprehension (2018), 200–210. doi:10.1145/3196321.
3196334

[37] Scott R. Klemmer, Anoop K. Sinha, Jack Chen, James A. Landay, Nadeem
Aboobaker, and Annie Wang. 2000. Suede: a Wizard of Oz prototyping tool
for speech user interfaces. In Proceedings of the 13th Annual ACM Sympo-
sium on User Interface Software and Technology (San Diego, California, USA)
(UIST ’00). Association for Computing Machinery, New York, NY, USA, 1–10.
doi:10.1145/354401.354406

[38] Harsh Lal and Gaurav Pahwa. 2017. Code Review Analysis of Software System
Using Machine Learning Techniques. 2017 11th International Conference on
Intelligent Systems and Control (ISCO) (2017), 8–13. doi:10.1109/isco.2017.7855962

[39] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen.
2023. CodaMosa: Escaping Coverage Plateaus in Test Generation with Pre-
trained Large Language Models. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE. doi:10.1109/icse48619.2023.00085

[40] Clayton Lewis. 1982. Using the "Thinking-aloud" Method in Cognitive Interface
Design. Technical Report RC9265. IBM Research. https://dominoweb.draco.res.
ibm.com/2513e349e05372cc852574ec0051eea4.html Accessed: 2024-08-23.

[41] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa Xu. 2021.
LayoutGAN: Synthesizing Graphic Layouts With Vector-Wireframe Adversarial
Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 7
(July 2021), 2388–2399. doi:10.1109/tpami.2019.2963663

[42] Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che,
Dandan Wang, and Qing Wang. 2023. Chatting with GPT-3 for Zero-Shot Human-
Like Mobile Automated GUI Testing. arXiv (2023). doi:10.48550/arxiv.2305.09434
arXiv:2305.09434

[43] Lina Mavrina, Jessica Szczuka, Clara Strathmann, Lisa Michelle Bohnenkamp,
Nicole Krämer, and Stefan Kopp. 2022. “Alexa, You’re Really Stupid”: A Longitu-
dinal Field Study on Communication Breakdowns Between Family Members and
a Voice Assistant. Frontiers in Computer Science 4 (Jan 2022). doi:10.3389/fcomp.
2022.791704

[44] Radka Nacheva. 2017. Prototyping approach in user interface development. In
Proceedings of the 2nd Conference on Innovative Teaching Methods (ITM 2017),
Vol. 28. 78.

[45] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2024. Using an LLM to Help With Code Understanding. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering (Lisbon,
Portugal) (ICSE ’24). Association for Computing Machinery, New York, NY, USA,
Article 97, 13 pages. doi:10.1145/3597503.3639187

[46] Christie Napa Scollon, Chu-Kim Prieto, and Ed Diener. 2009. Experience sampling:
promises and pitfalls, strength and weaknesses. In Assessing well-being: The
collected works of Ed Diener. Springer, 157–180.

[47] Justus D. Naumann and A. Milton Jenkins. 1982. Prototyping: the new paradigm
for systems development. Management Information Systems Quarterly 6 (1982),
29–44. https://api.semanticscholar.org/CorpusID:261071872

[48] Jakob Nielsen and Rolf Molich. 1990. Heuristic evaluation of user interfaces.
In Proceedings of the SIGCHI conference on Human factors in computing systems.
249–256.

https://www.adept.ai/
https://doi.org/10.1371/journal.pone.0264420
https://doi.org/10.1145/3360585
https://doi.org/10.1109/ICSE.1996.493447
https://doi.org/10.1145/3613904.3642406
https://doi.org/10.1145/3593230
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1145/800059.801130
https://doi.org/10.1017/dsj.2017.10
https://doi.org/10.1145/358886.358895
https://doi.org/10.48550/ARXIV.2408.10937
https://doi.org/10.1145/512950.512973
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/language/lambda
https://doi.org/10.1145/3586182.3615810
https://doi.org/10.1145/3586182.3615810
https://doi.org/10.1145/351827.351829
https://doi.org/10.1145/351827.351829
https://gemini.google.com/
https://web.archive.org/web/20110222112016/http://firstclassthoughts.co.uk/java/method_chaining.html
https://web.archive.org/web/20110222112016/http://firstclassthoughts.co.uk/java/method_chaining.html
https://doi.org/10.1109/iccv48922.2021.00104
https://doi.org/10.1109/raise.2012.6227961
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1007/1-84628-262-4_2
https://doi.org/10.1145/3544548.3581446
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1145/354401.354406
https://doi.org/10.1109/isco.2017.7855962
https://doi.org/10.1109/icse48619.2023.00085
https://dominoweb.draco.res.ibm.com/2513e349e05372cc852574ec0051eea4.html
https://dominoweb.draco.res.ibm.com/2513e349e05372cc852574ec0051eea4.html
https://doi.org/10.1109/tpami.2019.2963663
https://doi.org/10.48550/arxiv.2305.09434
https://arxiv.org/abs/2305.09434
https://doi.org/10.3389/fcomp.2022.791704
https://doi.org/10.3389/fcomp.2022.791704
https://doi.org/10.1145/3597503.3639187
https://api.semanticscholar.org/CorpusID:261071872
https://cppreference.com
https://JMLR.org

GenieWizard: Multimodal App Feature Discovery with Large Language Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan

[49] Dario Di Nucci, Fabio Palomba, Damian A. Tamburri, Alexander Serebrenik,
and Andrea De Lucia. 2018. Detecting Code Smells Using Machine Learning
Techniques: Are We There Yet? 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER) (2018), 612–621. doi:10.
1109/saner.2018.8330266

[50] OpenAI. 2024. ChatGPT. https://openai.com/chatgpt/. Accessed: 2024-08-23.
[51] Sharon Oviatt. 2009. Multimodal Interfaces. In Human-Computer Interaction (1st

edition ed.). CRC Press, Chapter 5, 20. doi:10.1201/9781420088861-10 Published
2 March 2009.

[52] Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2022. Social Simulacra: Creating Populated
Prototypes for Social Computing Systems. Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology (Oct 2022). doi:10.1145/
3526113.3545616

[53] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Bren-
dan Dolan-Gavitt. 2023. Examining Zero-Shot Vulnerability Repair with Large
Language Models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE.
doi:10.1109/sp46215.2023.10179324

[54] Witold Pedrycz and Keun-Chang Kwak. 2007. The development of incremental
models. IEEE Transactions on Fuzzy Systems 15, 3 (2007), 507–518.

[55] Kai Petersen, Claes Wohlin, and Dejan Baca. 2009. The Waterfall Model in Large-
Scale Development. Springer Berlin Heidelberg, 386–400. doi:10.1007/978-3-642-
02152-7_29

[56] Wolfgang Pree. 1992. Integration of Object-Oriented Software Development and
Prototyping: Approaches and Consequences. In Shifting Paradigms in Software
Engineering, Roland Mittermeir (Ed.). Springer Vienna, Vienna, 215–222.

[57] W Pree and G Pomberger. 1992. Object-oriented versus conventional software
development: A comparative case study. Microprocessing and Microprogramming
35, 1 (1992), 203–211. doi:10.1016/0165-6074(92)90318-2 Software and Hardware:
Specification and Design.

[58] Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and
Justin D. Weisz. 2023. The Programmer’s Assistant: Conversational Interac-
tion with a Large Language Model for Software Development. Proceedings of
the 28th International Conference on Intelligent User Interfaces (2023), 491–514.
doi:10.1145/3581641.3584037 arXiv:2302.07080

[59] W. W. Royce. 1987. Managing the Development of Large Software Systems:
Concepts and Techniques. In Proceedings of the 9th International Conference on
Software Engineering (Monterey, California, USA) (ICSE ’87). IEEE Computer
Society Press, Washington, DC, USA, 328–338.

[60] Ritam Jyoti Sarmah, Yunpeng Ding, Di Wang, Cheuk Yin Phipson Lee, Toby Jia-
Jun Li, and Xiang “Anthony” Chen. 2020. Geno: A Developer Tool for Authoring
Multimodal Interaction on Existing Web Applications. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology (UIST ’20).
ACM. doi:10.1145/3379337.3415848

[61] Omar Shaikh, Hongxin Zhang, William Held, Michael Bernstein, and Diyi Yang.
2023. On Second Thought, Let’s Not Think Step by Step! Bias and Toxicity in Zero-
Shot Reasoning. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics. doi:10.18653/v1/2023.acl-long.244

[62] Heng Tao Shen, Yueting Zhuang, John R Smith, Yang Yang, Pablo Cesar, Florian
Metze, Balakrishnan Prabhakaran, Kotaro Kikuchi, Edgar Simo-Serra, Mayu
Otani, and Kota Yamaguchi. 2021. Constrained Graphic Layout Generation via
Latent Optimization. Proceedings of the 29th ACM International Conference on
Multimedia (2021), 88–96. doi:10.1145/3474085.3475497 arXiv:2108.00871

[63] Andrey Sobolevsky, Guillaume-Alexandre Bilodeau, Jinghui Cheng, and Jin L.C.
Guo. 2023. GUILGET: GUI Layout GEneration with Transformer. Proceedings
of the Canadian Conference on Artificial Intelligence (June 2023). doi:10.21428/
594757db.08fe0a25

[64] Matthew Turk. 2014. Multimodal interaction: A review. Pattern Recognition
Letters 36 (January 2014), 189–195. doi:10.1016/j.patrec.2013.07.003

[65] wandb. 2024. OpenUI: Describe UI Using Your Imagination, Render It Live.
https://github.com/wandb/openui/. Accessed: 2024-08-23.

[66] Bryan Wang, Gang Li, and Yang Li. 2023. Enabling Conversational Interaction
with Mobile UI using Large Language Models. Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (2023), 1–17. doi:10.1145/
3544548.3580895

[67] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2024. Software Testing With Large Language Models: Survey, Landscape,
and Vision. IEEE Trans. Softw. Eng. 50, 4 (April 2024), 911–936. doi:10.1109/TSE.
2024.3368208

[68] Jackie (Junrui) Yang, Yingtian Shi, Yuhan Zhang, Karina Li, Daniel Wan Rosli,
Anisha Jain, Shuning Zhang, Tianshi Li, James A. Landay, and Monica S. Lam. 2024.
ReactGenie: A Development Framework for Complex Multimodal Interactions
Using Large Language Models. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for
Computing Machinery, New York, NY, USA, Article 483, 23 pages. doi:10.1145/
3613904.3642517

[69] Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xi-
aoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated
conformance testing for JavaScript engines via deep compiler fuzzing. In Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’21). ACM. doi:10.1145/3453483.3454054

https://doi.org/10.1109/saner.2018.8330266
https://doi.org/10.1109/saner.2018.8330266
https://openai.com/chatgpt/
https://doi.org/10.1201/9781420088861-10
https://doi.org/10.1145/3526113.3545616
https://doi.org/10.1145/3526113.3545616
https://doi.org/10.1109/sp46215.2023.10179324
https://doi.org/10.1007/978-3-642-02152-7_29
https://doi.org/10.1007/978-3-642-02152-7_29
https://doi.org/10.1016/0165-6074(92)90318-2
https://doi.org/10.1145/3581641.3584037
https://arxiv.org/abs/2302.07080
https://doi.org/10.1145/3379337.3415848
https://doi.org/10.18653/v1/2023.acl-long.244
https://doi.org/10.1145/3474085.3475497
https://arxiv.org/abs/2108.00871
https://doi.org/10.21428/594757db.08fe0a25
https://doi.org/10.21428/594757db.08fe0a25
https://doi.org/10.1016/j.patrec.2013.07.003
https://github.com/wandb/openui/
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1145/3613904.3642517
https://doi.org/10.1145/3613904.3642517
https://doi.org/10.1145/3453483.3454054

	Abstract
	1 Introduction
	1.1 Feature Discovery for GUI and Multimodal Apps
	1.2 Introduction to GenieWizard

	2 Related Work
	2.1 UI Design and Testing
	2.2 UI Development Feedback Generation with AI
	2.3 AI-assisted Developer Tools
	2.4 Multimodal App Development Frameworks
	2.5 Multimodal Interactions with AI Models

	3 GenieWizard System Design
	3.1 Overview of the ReactGenie Framework
	3.2 The Multimodal Feature Discovery Problem
	3.3 Overview of GenieWizard
	3.4 Simulate User Interactions
	3.5 Speculate on Missing Features from Interactions
	3.6 Suggest Features to Implement During Development

	4 Implementation
	5 Evaluation
	5.1 Example Apps for the Evaluation
	5.2 Zero-Shot Parser Performance
	5.3 Generation Pipeline Performance
	5.4 Developer Experience with GenieWizard Plugin

	6 Discussion
	6.1 API Level Suggestions vs. Concept Level Suggestions
	6.2 AI-powered Tools for Multimodal App Development
	6.3 Limitations
	6.4 Future Work

	7 Conclusion
	Acknowledgments
	References

