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Figure 1: Adaptive Multimodal Assistants (AMMA) is an architecture for building guidance assistants that can adapt to users’
progress, preferences, and capabilities. a) Progress: The user overcooked the fish fillet, which is no longer edible. Therefore AMMA
asks the user to grab another one and continue; b) Preferences: The user turned their heads-up display on when seasoning
previously, so AMMA uses it again for a similar step; c) Preferences: The user gathered ingredients fastest when highlighting and
audio were on, therefore AMMA uses it again; d) Capabilities: AMMA estimates the duration for the user to perform different steps
to optimize planning. In this case, AMMA asks the user to fry the chicken while boiling potatoes to reduce the completion time.

ABSTRACT

Novel technologies such as augmented reality and computer per-
ception lay the foundation for smart assistants that can guide us
through real-world tasks, such as cooking or home repair. However,
the nature of real-world interaction requires assistants that adapt to
users’ mistakes, environments, and communication preferences. We
propose Adaptive Multimodal Assistants (AMMA), a software ar-
chitecture for task guidance with generated adaptive interfaces from
step-by-step instructions. This is achieved through 1) an automati-
cally generated user action state tracker and 2) a guidance planner
that leverages a continuously trained user model. The assistant also
adjusts its guidance and communication delivery methods based
on observed user performance as well as implicit and explicit user
feedback. We demonstrated the viability of AMMA by building an
adaptive cooking assistant running in a high-fidelity virtual reality-
based simulator. A user study of the cooking assistant showed that
AMMA can reduce the task completion time and the number of
manual communication methods changes.

Keywords: Augmented reality, interface generation, smart assistant

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented re-
ality; Human-centered computing—Human computer interaction
(HCI)—Interactive systems and tools—User interface toolkits;

1 INTRODUCTION

Intelligent guidance systems can help people learn new tasks and
achieve known tasks more efficiently [21]. They can be useful in
everyday tasks like furniture assembly and cooking and in industrial
settings such as debugging and repairing equipment and physical
infrastructure. Recent years have seen advances in computer percep-
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tion for augmented reality (AR) [11, 42, 40, 14, 2]. Novel interface
technologies [10, 41, 22], such as AR or virtual reality (VR) can
provide richer multimodal interfaces in situ. These new technologies
are moving towards a future where AR systems understand the user’s
situation/preferences and can adaptively give users instructions.

However, the typical design of current guidance systems only
supports rigid, step-by-step, predefined instructions [25, 7], which
does not suffice to accommodate real-world situations. In the real
world, the user might not always exactly follow the guidance, and
the action might have a chance of failure. The best guidance for a
user depends on what action the user is currently performing and the
situation resulting from the previous actions. The guidance system
needs to understand if users have made mistakes and help them
recover from these mistakes. For example, a navigation application
must adjust the route if the user fails to follow the directions properly.

Furthermore, current adaptive systems use user-agnostic algo-
rithms to adjust their interfaces, and they do not explicitly consider
the varied abilities of users (walking speed, reaction time, etc.) and
the difference in preference for guidance modalities. For instance, a
common approach [21] is to adjust the level of detail of instructions
based on users’ reaction time. However, such an approach may
provide an expert with adaptively detailed information when they
respond slowly to instructions because of their slow walking speed.

In this paper, we propose Adaptive Multimodal Assistants
(AMMA), a multimodal adaptive guidance architecture. AMMA
allows developers to build a guidance assistant that adapts to the
user’s progress, preferences, and capabilities to generate the most
efficient instructions in the most effective communication modality.
AMMA achieved this by: 1) a state tracker that uses a given com-
puter perception algorithm to understand users’ current task status
and proposes possible steps to reach their goals; 2) a guidance plan-
ner that learns from a user’s behavior while they are performing the
task and observes their feedback through modality changes. By tak-
ing in a specification of a certain activity domain, AMMA facilitates
the development of a truly adaptive guidance assistant for real-world
complex tasks such as cooking and furniture assembly. These tasks
are complex in that there is more than one path to achieve the task



and more than one modality to inform the user of the guidance.

AMMA differentiate from previous adaptive systems in its guid-
ance planner, which uses user modeling as an intermediary step to
better fit users’ diverse requirements. Our guidance planner observes
the user’s behavior but does not directly map that to guidance based
on rules. A user performing a step slower can be caused by having
trouble A) understanding the instructions, B) walking to the area, or
C) transitioning between the actions. Compared to using a one-size-
fits-all solution, AMMA would learn what is causing this step to be
slow by modeling the user’s past behavior and making appropriate
adjustments based on that user model. In the end, the system will
perform differently for different users: A) use a different modality
for this instruction; B) optimize instructions prioritizing walking
distance; C) optimize instructions grouping the same type of actions.

We demonstrated the capacity of AMMA architecture by building
an augmented reality cooking assistant in a simulated virtual reality
environment (similar to what has been proposed by Lacoche et al.
[26]). We conducted an evaluation user study that compares it with
a baseline assistant with a pre-defined guidance policy. Our evalua-
tion results show that Adaptive Multimodal Assistants significantly
reduces the task completion time and the number of times users need
to manually adjust the communication modalities. 10/12 participants
in our study preferred our adaptive system over the baseline system.

Our contributions are:

1. AMMA, an architecture for building intelligent guidance as-
sistants that can adapt to users’ progress, preferences, and
capabilities. It includes a state tracker that tracks users’ ac-
tions, handles action orders, and helps users correct mistakes;
a guidance planner that generates the guidance policy using a
parameterized user model trained from user interactions.

2. The implementation of a cooking assistant built with AMMA

demonstrates the architecture’s capacity.

An evaluation of the cooking assistant in a simulated envi-
ronment that illustrated the adaptive assistant substantially
improved task performance, reduced the cost of manual Ul
adjustments, and was preferred by the users.

In the following sections, we first outline related work in intel-
ligent guidance systems and adaptive interfaces. We then present
the architecture and algorithms of Adaptive Multimodal Assistants.
After that, we describe the implementation of Adaptive Multimodal
Assistants in a cooking assistant and the evaluation of the assistant.
Finally, we discuss the limitations of our work and future directions.

3.

2 RELATED WORK

There are three different categories of research related to our adaptive
multimodal assistant: adaptive user interfaces, state tracking in
guidance systems, and multimodal interfaces for guidance systems.

2.1

Many adaptive behaviors are implemented for guidance systems.
Unlike most apps where the user instructs the machine for informa-
tion, guidance systems take the initiative most of the time and guide
the user through a task by giving the user instructions.

Prior research has studied adaptive guidance systems that can
change their behavior according to the user’s interactions. Some
work makes adaptations based on developer-specified policies. For
example, AdapTutAR [21] uses response time to adjust the level of
detail (LOD) of tutoring content for guiding equipment usage. Other
systems use developer-provided information with optimization or
machine learning techniques. For example, Lindlbauer et al. [29]
uses cognitive load and developer-provided task load cues to adapt
the LOD of relevant notifications from other applications for mini-
mizing distractions. Another example is the work in ScalAR [37],
which uses developer-provided training data to adapt AR interfaces
for showing AR content in the users’ own environments. These
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systems either require heuristic rules from the developer or may not
be able to adapt to the user’s varying capabilities and preferences.

Another strategy is to rely on reinforcement learning to train
the system [5, 33, 3]. For example, Mu et al. [33] developed a
tutoring system that uses a multi-armed bandit algorithm to adapt to
individual students. These systems are highly adaptive to users, yet
they require many time-consuming training sessions.

Both strategies don’t have the user model as a separate component
but react to observations of the users based on task-specific policies.
The policy requires more work from developers and can’t accommo-
date every user. The reinforcement learning solution requires many
users or an extended period of use to achieve adaptation.

In domains other than guidance systems, prior research on user
interface (UI) transformation has explored combining user modeling
with algorithms to generate interfaces that adapt to a specific user.
For example, SUPPLE [16, 17] collects user traces and finds the
most efficient interface layout for the user. Li et al. [28] models
the user’s notification preferences based on how they interact with
notifications and uses the model to inform the delivery of future
notifications. These systems learn user preferences based on past
behavior to adapt UL In contrast, in a guidance system, the user’s
past behavior is often not the most efficient way to complete the task
we are guiding them. Different guidance tasks also involve different
constraints and dependencies, so it is hard to generalize a user-trace-
based model for a diverse list of supported tasks. Therefore, AMMA
is built upon well-established techniques for user modeling [8, 31].
In this style of adaptation, the developer provides a user model
that applies to all tasks in a high-level activity (see definition in
Section 3.1) and AMMA personalizes the model for the current user.
AMMA can then use the personalized model and a simulator based
on the state tracker to generate a personalized policy for presenting
instructions. Our architecture combines the personalization of a user
model and the unique task characteristics embedded in the simulator.

Another trend of research is on affective computing systems.
These systems change the software behavior according to the user’s
affective state. Chao et al. [9] changes a virtual tutor agent’s facial
expression based on the user’s affective state. Yannakakis [43]
experiments with changing a game’s difficulty level based on the
user’s physiological state and expressed emotions. Affective Music
Player [38] plays different music to help users achieve a target mood.
AMMA differs from them because it focuses on the efficiency of
guidance rather than improving or changing affective states.

2.2 State Tracking in Guidance Systems

AMMA can track the relevant physical objects (e.g., food products
in a cooking task or furniture components in an assembly task) and
the corresponding steps where they are used. It can also handle error
recovery, ambiguous actions that could be part of similar steps, and
accept users’ out-of-order steps (see Section 4.2 for more details).

There are existing guidance systems that do not use automatic
state tracking. TutoriVR [25] augments VR video tutorials for VR
sketching tasks. Cao et al. [7] propose an AR tutoring system using
AR avatars to guide users to operate a complex machine. These
systems rely on manually reporting the user’s current step, which
introduces an additional burden to the user that makes it hard to
observe and learn from the user’s behavior at scale.

Some other guidance systems contain automatic state tracking
based on pre-provided state graphs. Zauner et al. [44] describes
an AR assembly guidance system using a state diagram from an
authoring tool. Miyawaki and Sano [32] propose a cooking agent
that uses a recipe as a state model and sensors to keep track of state
transitions. Cooking navi [19] uses a recipe database as the state
graph. However, all these systems expect users to always follow
the steps and can’t handle the users’ mistakes or assist the user in
recovering from them. AMMA, in contrast, have a unique state
tracker that can understand the user’s mistakes through predefined



actions and can compute the possible steps that the user can take to
recover from them (see Section 3.1 and Section 4.2). This design
allows AMMA to work with complex tasks, i.e., more than one path
to achieve the task and more than one modality to inform the user
of the guidance. In comparison, many prior projects mainly target
simpler tasks where there is only a specific sequence of actions.

Another style of state tracking relies on machine perception to
directly translate perceived signals to states. Hamada et al. [19]
and DuploTrack [18] use computer vision techniques to generate
the task state. This approach is demonstrated with the assembly
process of LEGO bricks for real-time guidance but is unsuitable for
complex activities, such as cooking and furniture assembly. The
state cannot be easily inferred from a single image in these activities.
AMMA uses a more general approach, i.e., infer the user’s situation
by tracking the sequence of actions that the user has taken.

2.3 Multimodal Interfaces for Guidance Systems

Multiple approaches have been proposed to guide users through
complex tasks in real-world situations. Prior research has been
focused on handling multimodal input [4, 23, 41, 36]. Multimodal
input allows users to convey their intentions efficiently and naturally.
For guidance systems, in contrast, output and feedback to the user
are more important as users are primarily following instructions.
For multimodal output, some researchers compare the perfor-
mance of different modalities [6, 30, 13] for guiding users through
tasks. For example, Liu [30] compared how auditory, visual, and
multimodal displays affected drivers’” performance in different driv-
ing conditions. Cooking Navi [19] provides text, videos, and audio
simultaneously to better guide users through cooking procedures.
Although these multimodal methods are effective, users have dif-
ferent preferences in different scenarios. Therefore, adapting the
output methods is a crucial problem to solve if we are to further
enhance the user experience and performance of guidance systems.
Unlike prior work, we aim to provide an adaptive assistant that can
automatically adjust to an individual’s preference and performance.
In our work, we use common multimodal output methods, includ-
ing a heads-up display (with text instructions or object highlighting),
a large monitor (with video or text instructions), and audio instruc-
tions. Unlike the prior work, AMMA also observes user behavior
and feedback to adapt the modalities to the user’s current situation.

3 OVERVIEW OF AMMA

AMMA comprises three components (see Fig. 2): 1) Interaction
support observes the user’s actions, monitors the user’s feedback,
and provides guidance; 2) Tracking and planning contains the state
tracker and guidance planner; 3) Activity specification supports a
specific activity, including the user model template, the multimodal
feedback Uls, and the specifications of tasks, steps, and actions.

3.1

We define terms formally below. The overall goal of a guidance
assistant system is to aid a user in performing a high-level activity,
such as “cooking dinner” or “assembling a bed.” An activity consists
of several tasks, such as “cooking chicken cacciatore” as an entree
for dinner. Like commonly used text-based instructions, we break a
task into steps. In the real world, steps are usually applied to certain
physical objects. For example, a component when assembling
furniture or an ingredient when cooking. Actions are individually
observable atomic behaviors that can be combined to accomplish
a task. For example, a step such as “transfer the cooked salmon
from the pan to the dish” can be broken down into actions, such as
“remove the salmon from the pan” and “add the salmon to a dish”.

Definitions of Activity, Task, Object, Step, and Action

3.2

The interaction support component needs to observe users’ actions
and feedback, and provide multimodal guidance to the user.

Interaction Support
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Assistants built with AMMA start by observing users’ actions @
and taking in users’ feedback @. AMMA assistant observes actions,
including the user’s position, their current action, and the object that
they are working with. It also uses explicit user feedback, such as the
adjustment of the modality settings. In addition, AMMA assistant
combines the data from multiple user actions to improve its modality
choices. For example, it obtains implicit user feedback, such as a
user’s reaction time to a type of guidance modality. Both types of
feedback help the system understand whether the used guidance
modality is the best fit for the user and the current step.

The AMMA-based system generates guidance and a choice of
modality @. The set of different modalities/UIs is used to render
instructions to guide the user in completing the task.

3.3 Tracking and Planning

The core of AMMA contains the state tracker and the guidance
planner: A state tracker is a sub-system that tracks the current state
from the user’s actions and produces the valid actions and steps at
the current state. A guidance planner is a sub-system that accepts the
user’s feedback and selects the most appropriate step and modality to
guide the user. We will dive into their technical details in Section 4.

The observed actions are fed into a state tracker @. The state
tracker monitors all the objects related to these actions. It also tracks
the possible steps of the object and the status of these steps (the
actions that have been completed and need to be completed).

The guidance planner @ uses the objects and possible steps from
the state tracker @ to select the best step and the best modality to
provide guidance. It contains three modules: the user model @,
the simulator @, and the policy algorithm @. The assistant gathers
feedback from the user to train the user model @. The user model
summarizes our understanding of the user behavior. It can, based on
the user: 1) predict how long a certain step will take, 2) offer the best
guidance modality of a step. It takes in the user’s current position in
the task and the type of step they are on to make a prediction. The
simulator @ is similar to the state tracker @: Both the simulator and
the state tracker keep track of a list of objects and their current step.
The main difference is that the simulator operates on a list of virtual
objects with no physical representations. The simulator also accepts
available steps for the objects it keeps track of. Another difference
is that the simulator only simulates at the step level instead of at the
action level, as the guidance given to the users is at the step level.
This allows AMMA's policy algorithm @ to simulate more quickly
while reducing the workload on the policy algorithm.

3.4 Activity Specification

AMMA has an activity specification component to account for the
domain-specific information related to the activity. It includes: 1)
Action specification: action types (e.g., make one cut with a knife
or screw in a screw) and how to observe them (e.g., computer vision
or embedded sensors); 2) Step specification: step types (e.g., cut
food into n pieces or fix wooden legs to a tabletop) and the actions
they are composed of (e.g., n — 1 single cut or four screws screwed
into the legs); 3) Task specification: a set of tasks (e.g., make a
salad or assemble a dining desk) and their instructions described in
steps; 4) Multimodal feedback Uls: a set of guidance interfaces
that can convey a step’s instructions and the task’s current status. 5)
User Model Template: a differentiable model of the user’s action
time, modality preference, and default parameter values.

For action specification, AMMA needs a list of actions and a
computer perception implementation to recognize the actions. For
example, for furniture assembly, the actions might be: gather com-
ponents, screw in a screw, insert one component into another, etc.
‘We can imagine that in a cooking task, a smart scale can be used for
accurately measuring how much seasoning has been added, and in a
map navigation scenario, a GPS can be used to determine if the user
has made a turn/made a lane change successfully. AMMA also needs
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Figure 2: AMMA Overview: AMMA’s interaction support renders the feedback interface and gives instructions to the user while observing the
user’s actions and feedback. AMMA's state tracker keeps track of all the relevant objects in the scene and their steps according to the task. It also
accepts the user’s actions and updates the corresponding object’s step status. AMMA’s guidance planner processes the current state from the
state tracker through its policy algorithm, simulator, and user model. Then, the policy algorithm selects the best step and modality to present
the associated guidance. Both AMMA's state tracker and guidance planner are generated directly from activity specifications provided by the

developer, including tasks, steps, and action specifications.

to know whether the action is harmless, reversible or irreversible.
The full definition and rationale will be given in Section 4.2. For
example, touching an object is considered harmless, adding a solid
object to a dry container is reversible (you can simply remove it), but
adding a liquid to a container that already holds liquid is not, as you
cannot pull one component out of a mixture. In the case where an ac-
tion involves adding another object, we distinguish between whether
it remains a separate component or it undergoes full integration into
the resulting object (see scenario 6 in Section 4.2).

For step specification, AMMA expects step definitions by the
actions they are composed of. For example, for frying shrimp for
60 seconds, we expect the user to add shrimp to a pan, heat the
pan for 1 second 60 times, and then remove the shrimp from the
pan. Similarly, for attaching legs to a tabletop, the actions can be
gathering a leg of the table and nailing the leg onto the bottom of the
tabletop. Note that sometimes an action in a certain step may require
not only a certain type of object but also the state that the object is
at. For example, when preparing for surgery, the surgeon needs to
grab a scalpel, and the scalpel needs to be at the step “cleaned”.

For task specification, AMMA needs a list of fasks comprising a
sequence of steps. For example, it is a list of recipes in the case of
cooking and a list of instructions in the case of furniture assembly.

An application built with AMMA also needs to specify a set of
multimodal feedback Uls. These Uls can render the step provided by
the guidance planner as an instruction to the user. For each modality
(headphones, monitors, smart watches, or HUDs), the application
can provide multiple choices of Uls, and the guidance planner @
will select the appropriate one for the user.

Finally, the application needs to specify a user model template,
which contains a differentiable model (a formula) to produce the
predicted task completion time, error rate, and the user’s preferred
modality from the next step that the system plans to instruct.

Both the simulator @ and the state tracker @ are automatically
generated from activity specifications @.

4 STATE TRACKER AND GUIDANCE PLANNER DESIGN

We detail the design of the state tracker and the guidance planner.

4.1

We want AMMA to capture the user’s current task state and provide
the most appropriate guidance according to their preferences and
prior behavior. Our design goals are:

Adaptability to Progress: AMMA should track users’ progress,
detect users’ mistakes, and generate the possible next steps.

Design Goals
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Adaptability to Preferences: AMMA should learn the user’s com-
munication preferences and guide users in the preferred modality.
Adaptability to Capability: AMMA should adapt to the user’s ca-
pabilities based on prior observed behavior and offer instructions
that will maximize the user’s performance.

4.2 State Tracker Design

Our proposed state tracker addresses Adaptability to Progress. It
tracks all the objects relevant to the tasks, the steps they are at, and
the status of these steps. The state is formally defined as the list
of objects and their steps. Therefore, state tracking consists of the
following tasks: 1) building step tracking graph; 2) tracking objects
through steps; 3) tracking state as a set of object and their steps.

4.2.1

Our state tracker needs a step-tracking graph to understand what
steps have been taken to an object and the possible steps in the future.
For example, a task like cooking a fried chicken dinner with a list
of steps is shown in Fig. 3. An AMMA-based system will build the
step-tracking graph based on the provided steps.

The step-tracking graph is a directed graph, where the steps are
the nodes, and the directed edges connect step A to B if B depends
on A; e.g., step 4 (S4) depends on S3 because it’s working on the
same potato. To reduce repeated work when mistakes are made,
we define three types of dependencies: continuation dependency,
component dependency, and integration dependency. Continuation
dependency means that the current step is a continuation of another
step working on the same object, e.g., S2 is a continuation of S1
because they are both working on the same object. Component
dependency means that the current step requires an object from
another step as a component. We refer to the object that the compo-
nent belongs to as its parent object. Component objects are still
being tracked as a normal object, but they can no longer be used as a
component dependency of another step. However, if its parent object
is destroyed, the component object will be released and can still
be used to complete another step with component dependency. For
example, S5 is a component dependency of S14 because the potato
wedges can still be reused if the chef puts ketchup instead of mayon-
naise on the plate. Integration dependency means that the current
step requires an object from another step to be permanently bound
to the current object. For example, S1 is an integration dependency
of S5 because the salt is permanently bound to the potato.

To handle ambiguity, nodes representing identical steps that de-
pend on the same nodes are merged as one; the merged nodes inherit
all the outgoing dependencies; the merge is performed recursively to

Step Tracking Graph
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Figure 3: State tracking of AMMA converts a list of steps (left) to a step tracking graph (right) by 1) merging similar steps, such as step 2 and step
6, together, and 2) identifying continuation, component, and integration dependencies. This allows AMMA's state tracker to track the user’'s normal,
irrelevant, and out-of-order actions. It can also show the user how to recover from mistakes.

find all ambiguous steps. In the case of the above recipe, we can see
that S2 and S6 are both grabbing a potato and depend on no other
steps. We merge them and make step “boil the potato” and step “cut
the potato into five wedges each” depending on the merged node.

It should be noted that the step-tracking graph is naturally acyclic.
Any topological sort of graph is a legal execution. We say a step is
valid if all the steps they depend on have been performed.

4.2.2 Tracking Object Through Steps

Perfectly, the assistant only needs to read out the step-by-step in-
structions to the user. But in reality, the user may fail to follow the
directions precisely. A guidance assistant must handle six scenarios:
Scenario 1 the user follows the instructions correctly;

Scenario 2 the user performs an irrelevant action (e.g., picking up
an ingredient that is not needed for a recipe);

the user performs an action out of order (e.g., for a fish
and chips recipe with a cooking order of fish, chips, and
then sauce, and the user cooks the sauce first);

the user performs an ambiguous action (e.g., the user
grabbed a potato, but it can be used in two different
steps — one is to deep fry the potato into fries, and the
other is to make mashed potatoes);

the user makes a recoverable mistake (e.g., the user
accidentally takes the potato chips off the plate and
needs to add them back);

the user makes an unrecoverable mistake (e.g., the user
burns the fish, and it is no longer edible).

Scenario 1 is obvious: if the user performs an action correspond-
ing to the instructed step, then the user follows the step correctly.
For scenario 2, because we only observe actions relevant to the
activity, if the user does something completely irrelevant such as
using their phone while cooking a dish, it will not change anything
in the state tracker. The difficulty lies in the user performing a
relevant action that does not change the status of the object being
acted upon. For example, we track if the user grabs an object in
the ingredient-gathering step, and if the user simply touches a food
item while seasoning it, it shouldn’t change its state. Therefore, we
introduce a property for actions called “harmless”, which means if
the state tracker observed this action and it is not expected as part
of the current step, we can safely ignore it. For scenario 3, any
valid step that the user performs, which is not the one instructed,
is considered out-of-order and recorded as such. As usual, we will
proceed the object to its next step if all the current step’s actions
have been performed. To distinguish between scenarios 5 and 6, we
introduce a property for actions called reversible. The developer
needs to identify reversible actions and their corresponding reverse

Scenario 3

Scenario 4

Scenario 5

Scenario 6
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actions to recover from errors. For example, adding an extra item or
removing a required item is reversible by just removing or adding
the item, respectively, but overcooking the fish is not reversible.

We use our step-tracking graph to minimize the extra work neces-
sary when an irreversible mistake is made. For example, if the user
drops the fried potato on the dish on the ground (see Fig. 3), we will
only ask the user to redo the “Fried Potato Wedges” part of the tasks
instead of asking the user to redo the entire dish.

4.2.3 State Tracking Through Step Tracking

The current state of a system built by AMMA is defined as a set of
objects, their current step, and the actions for these steps.

At the start, the valid steps are those without previous steps and
dependencies (start actions). In the example of furniture assembly,
these are usually gathering steps where we gather all the components
needed for the task. Once an action that is part of the start action is
completed, the state tracker keeps track of all the steps dependent on
the resulting object of the action. Note that to deal with ambiguity
in actions, an object can be at different steps, and the tracker must
anticipate multiple sets of possible actions at the same time. If all
the actions required for the step are completed, the state tracker
removes the current step from the object and adds the next step to
the object. If an unexpected action is performed on an object, the
state tracker will act accordingly depending on whether the action is
harmless or reversible. If the action is irreversible, the state tracker
will remove that step from the potential steps. If all possible steps are
removed from an object, it probably means that something is wrong
(e.g., the fish got overcooked) with the object, and the algorithm will
destroy that object. When an object gets destroyed, the state tracker
removes the object from tracking and asks the user to throw it away.

Normally, if an object is destroyed, we simply remove it from the
state tracker. The guidance generation component of AMMA will
guide the user to repeat the steps to re-create another object of the
same type. Objects involving components are treated differently.

1. If a parent object is destroyed, all its components are released

so that they can be used in another step.

If a component object is destroyed, a special action will be

added to its parent object that requires a same-type object to be

added before the current step of the parent can be completed.

. Note that objects used in integration dependencies can be de-
stroyed without incurring any extra work. For example, if the
bottle of salt is dropped into a garbage bin, a potato that has
been seasoned needs not be redone.

2.



4.3 Guidance Planner Design

The guidance planner design satisfies the goal of providing Adapt-
ability to Preference and Adaptability to Capability.

For Adaptability to Capability, we leverage the user model to
predict user performance in completing a task [8]. For guidance,
the policy algorithms have to adapt to the specific task, the progress
made according to the state tracker, as well as the user model.

For Adaptability to Preference, AMMA should choose the best
modality for the user while requiring as little feedback as possible.
We adopted two methods to learn the user’s preference: 1) observe a
user’s explicit feedback, e.g., the user says they want audio guidance
at a certain step; 2) observe a user’s implicit feedback, e.g., the user
performs the step faster when using audio guidance.

The guidance planner needs to consider both the user’s behavior
through their feedback and the characteristics of the task to select
the best step and best modality to guide the user. The planner
understands the user’s behavior through a user model trained with
the user’s feedback. It can also know the dependencies within
the task through the generated simulator. Finally, it runs a policy
algorithm combining both insights to generate guidance.

Note that user modeling is not new in guidance planner; it has
been used for software heuristic evaluation [8, 31] or adapt interfaces
to user ability at run time [17]. The way AMMA uses user modeling
is novel as it is for guidance systems that have a long expanding
task list (different dishes in a cooking app or different furniture in
a furniture assembly app) rather than a specific task targeted by a
regular app (writing a document for a word processing app).

First, the planner needs to train a personalized user model. The
user model is initialized from the user model template provided in
the activity specification. The guidance planner can then use implicit
and explicit feedback to train the user model to adapt to the behaviors
of the current user (see Section 3.3). The model can also output some
observable intermediary results to reduce training time. This is so
that AMMA can use a replay buffer and stochastic gradient descent
to check these intermediary results and the final time estimation
against real-world observations to train the user model faster. These
observations include where the action may happen, how long it takes
to take the first action in a step, etc. Under AMMA architecture,
the application will use batched stochastic gradient descent [24]
to train the user model to produce the best modality for the user.
In practice, because implicit feedback relies on an accurate user
model, we only use this style after the user model has been trained
for a while. In the case of the cooking assistant app, we disabled
the implicit feedback for the first cooking session (personalization
session, see Section 6.1).

In the simulator, each step has a failure rate and a time cost as
predicted by the user model. The failure rate is the probability that
the user will fail to complete the step. If the failure happens, the
simulator removes the object from its state. The time cost is the time
it takes to complete the step. The simulator will also keep track of
the total time. If there are time-sensitive steps, it will also check if
the time is up and remove the object from the state tracker.

The policy algorithm uses the trained user model and a simulator
to generate the user guidance. For AMMA, the policy algorithm can
be implemented using reinforcement learning or a search algorithm.
We used Q learning and a multi-layer perceptron (two 64-neuron
hidden layers) Q function trained with the user model and the sim-
ulator for the reinforcement learning implementation. Usually, the
initial training takes a long time (around 2 hours on an M1 Mac-
book Pro CPU for a recipe in the cooking assistant as defined as
Section 5). Therefore, we pre-train an initial neural network for
each task before its first usage. While the user is using the assis-
tant, our guidance planner keeps training the network with the new
user model. For updating the weights of the Q-network, AMMA
keeps the replay buffer across different versions of the model so that
AMMA has more data to train with. We prioritized sampling of data
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generated with the newer user models. Our search algorithm is a
Monte-Carlo tree search [39] that uses a baseline policy to simulate
the completion time at the maximum depth. The baseline policy is
implemented by choosing the first step in the task that has not yet
been completed. Although both algorithms can be useful depending
on the application and the implementation, we found that the search
algorithm can more quickly adapt to the constantly updating user
model in our cooking assistant implementation. Therefore, our user
study used the search algorithm for the guidance planner.

5 EXAMPLE OF AMMA-SUPPORTED ASSISTANT: A COOK-
ING ASSISTANT

AMMA can support building guidance assistant systems for activi-
ties that require adaptability to preference, capability, and progress.
Below, we provide an in-depth introduction to how to implement
a cooking assistant using AMMA. Further discussions about how
AMMA may support other activities are in Section 7.2. As AMMA
is focused on state tracking and policy generation, we used a sim-
ulated environment to avoid the complication and inconsistency of
computer vision action recognition algorithms for implementing the
cooking assistant. We described our activity specification below.

5.1 Tasks, Steps, and Actions in Cooking

For cooking, we defined nine observable actions in the game: grab,
add a product to a container, remove a product from a container, pour
a product to a container, pour a product from a container, season
condiment onto a product, cut product, start to cook product (includ-
ing boil, fry, bake, microwave, deep-fry, and grill), stop cooking
product, and blend products together in a container. In the case of
these nine actions, only “grab” is harmless. “Add a product to a con-
tainer” and “remove a product from a container” are reversible and
they are the inverse of each other. “Pour a product into a container”
is only reversible when there is no other liquid in the container, and
it can be reversed with “pour a product from a container”. From the
recipes defined in the game, we have seven types of steps: gather
ingredients, transfer product to the container, pour product into the
container, season a product with condiments, cut a product into
several pieces, cook a product in a particular fashion for several
seconds, and blend products together in a container. For the tasks,
we build a converter that can convert most of the 80 recipes supplied
with the game into a list of steps in the format that AMMA supports.

5.2 User Modeling for Cooking Tasks

For user modeling, we observed that the amount of time a step re-
quired is usually composed of the following components (similarly
to Keystroke-level model [8]): T =M «P+W +1+A«N. T is the
total time spent on a step. M is the mental preparation time. P mea-
sures the impact on preparation time based on the user’s preference
for the modality. For example, if the instruction is confusing, it may
take longer for the user to start the first action. The user’s modal-
ity preference depends on the current step type and the presented
modalities. W is the walking time from the user’s location to where
the first action can happen. [ is the idle time when the user waits
for the action to become available. In our case, it is only available
for the stop cooking product action, accounting for the time for the
user to wait until the product is cooked for the specified amount of
seconds. A is a variable of the execution time of a single action in
the step. This changes according to what step type is being executed.
N is the number of actions needed. For “transfer”, “season”, and
“pour”, it is the number of ingredients. For “cut”, it is the number of
pieces minus one. For all other actions, N = 1.

For the walking time W, we use Fitts’ law [15] to model this
behavior [12]: W = Ulog,(D/2W +1). U is a variable for the
user’s average walking speed. D is for the distance between the
user’s last position and where the user needs to be to execute the
current step. We estimate the position of each step according to the
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Figure 4: Guidance modalities implemented in our cooking assistant:
monitor (text instructions only or text + video instructions), audio (on
or off), HUD (highlight, text instructions, or off).

average positions of where that step has occurred before. W is the
width of the target, and we empirically assigned it to be 1(m).

We separately model the success rate as follows: S = Sj, SN, S
is the success rate of a step. S, is the base success rate of a step. S,
is the success rate of action in a step. N is the number of actions
needed, similar to the definition above.

We assigned heuristic values to all the variables as initial values.
‘We modeled all of these variables as “parameters” in the PyTorch
library and used batched stochastic gradient descent [24] to fit the
model at run time to estimate users’ behavior.

5.3 Multimodal Guidance Uls

We provide multimodal guidance in three modalities: a heads-up
display (HUD), a large monitor, and audio guidance. For the monitor,
we can show only the text instructions or the next instruction and a
video demonstrating the action. For audio guidance, we can speak
the next instruction. For the HUD, we can either highlight the current
object or display the next instruction. The audio guidance and the
HUD can be disabled to reduce distraction. All interfaces are locally
loaded as an asset bundle in the Unity plugin. The Python server
communicates with the plugin to toggle the modalities, update the
instructions, and play audio guidance.

5.4

We used an existing VR game called Cooking Simulator VR for the
simulated environment. ! Our assistant implements the tracking,
planning, and most activity specifications in a Python program Cook-
ing Assistant Server. It also implements the interaction support and
the multimodal guidance Ul in a Unity plugin for Cooking Simulator
VR Cooking Assistant Plugin. The two parts communicate through a
TCP socket. The plugin receives user actions like grabbing and then
passes onto the message queue. The server then responds according
to its policy, which the plugin passes to the user through the modality
and/or with the information instructed by the model. 2

Implementation

6 EVALUATION

In a user study, we tested the adaptive multimodal guidance features
of AMMA to examine if they help reduce task completion time and

'https://store.steampowered.com/app/1358140/
2Source code of both parts can be found at https://jya.ng/amma
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manual switching among modalities.

For any guidance system, a state tracker is required to decipher
which step the user is at and which steps the user can take next.
Therefore, we built a baseline condition with the same state tracker
for comparison. The baseline condition uses a manual modality
selection where the user can use the same commands to adjust the
output modality used in AMMA. Similar to most software preference
settings, it will not automatically change according to the user’s
current action. The baseline also uses a baseline guidance algorithm,
where we choose the first available action in the recipe.

6.1

The experimenter first demonstrates the system’s functionality with
a simple training recipe 7 (i.e., baked tuna). During the training, we
explained how to grab, season, cut, and pour products in the game
and change the guidance modality using voice commands. We then
asked the user to try the same recipe 7" in VR. During this part of the
training, we verbally guided the user on interacting with the system.
After the first training recipe, we asked the user to cook another
recipe P (i.e., baked tenderloin with fried carrot) to personalize our
user model. We did not give the user verbal guidance for this recipe,
and the user relied on the embedded guidance system. At this point,
we asked the user to fill in a NASA-TLX questionnaire [20] to reduce
any carry-over effects of the likely higher training + personalization
task loads.

After the training + personalization phase, we asked the user to
try two structured recipes Ay, B; with either condition (AMMA
and baseline). A; and B; both have four similar general steps:
seasoning, cooking, cutting, and plating The two recipes have 11 and
12 actions involving different cooking components (ingredients and
cookware) to reduce the learning effect. The recipes and conditions
were counterbalanced to further address the learning effects and
the impact of differences in the recipes. We measured the task
completion time and the number of times the user adjusted the
modality setting. After each recipe/condition, we assessed the task
load of each version of the system using the NASA-TLX. Finally,
we asked the participants for their overall preferences regarding the
two conditions and thoughts on using different guidance modalities.

The procedure took around 60 minutes, and we compensated
each user with a 30 USD gift card. Our university’s Institutional
Review Board approved this study. To closely simulate a real-world
cooking experience, we also find a room large enough to fit in most
of the main scenes of the cooking simulator so that the user is really
walking to navigate the virtual environment.

Procedure

6.2 Participants

We recruited 13 participants (six male and seven female, aged 19-40
M =27,u = 27). We discarded P8’s data because the simulation
crashed many times, so P8 could not finish the task. Most of our
participants had used VR before, with one using VR daily, two using
VR weekly, two using VR monthly, six using VR a few times a year,
and two using VR for the first time. Most of our participants are
frequent cooks, with four cooking daily, four cooking weekly, four
cooking monthly, and one cooking a few times a year.

6.3 Results

In the user study, we found that users performed the cooking tasks
faster and needed to switch between modalities less with AMMA as
compared to the baseline. We also observed that our user model can
better predict users’ action time after a personalization session.

6.3.1 Guidance Planner Performance

The average task completion time for AMMA and the baseline
was 380.2 and 487.6 seconds, respectively (see Fig. 5a). We used
a paired t-test to test the difference between the two conditions,
and the result is statistically significant ( = 5.031, p < .001). Our
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Figure 5: a) The average task completion time for AMMA and the baseline was 380.2s and 487.6s. Users spent significantly less amount of
time cooking with AMMA (r = 5.031, p < .001). ***: p < 0.001 b) The medians of the NASA-TLX for AMMA and the baseline are 13.5 and 11.5,
respectively (U = 20.0, p = .243, not significant). This showed the effect on task load is minimal. c) We compared the user model estimation
error of the user’s steps in the AMMA condition using the user model saved before personalization (M;) and after personalization (M;). We found
that the user model can predict the step time significantly better after personalization than before (r =4.94,p < 0.001). ***: p <0.001 The blue
region is a 95% confidence interval. The blue dots denote the original data points.

participants changed modalities 0.75 times and 1.5 times on average
while using AMMA and the baseline system, respectively. A paired
t-test shows this difference is statistically significant (f = 2.287,p <
.05). Therefore, AMMA significantly reduced the user’s completion
time and the need to change between modalities.

6.3.2 State Tracker Performance

During our user study, we found that AMMA helps users to recover
from 10 mistakes during the personalization and two experimental
sessions (note that even the baseline uses AMMA'’s state tracker).
Five participants poured too much oil into the pan, and the system
successfully asked them to pour out the excess amount. Three
participants shattered the plate, and the guidance system asked them
to grab another plate. Two participants seasoned food products with
the wrong ingredients, and the system correctly asked them to grab
another food product to do again. Our system can help users recover
from mistakes and complete tasks.

6.3.3 Cognitive Load

The medians of the NASA-TLX for AMMA and baseline are 13.5
and 11.5 (see Fig. 5b). While a slight disadvantage exists for
AMMA, the result is not statistically significant (U = 20.0, p = .243).
One notable difference was the lower temporal demand for the base-
line. This is likely due to the increased density of instructions offered
by AMMA. In practice, AMMA is only going to plan actions that
the user model estimates the user should be able to finish in time, so
we did not observe a significant impact on the task load.

6.3.4 User Model Performance

To confirm that our user model was adapting to users’ behavior,
we compared the user’s models saved before the personalization
session (a generic user model provided by us) M, and after the
personalization session M», (see Fig. 5c). We evaluated the model
accuracy using the user’s step time captured in the AMMA condition.
We compared M| and M;’s performance for each participant and
found a statistically significant difference between the models (10.45
and 7.76 on average, respectively, = 4.94, p < 0.001). This shows
that our user modeling technique is working, and from observing
user behavior, our user model is getting 26% better at estimating
step time even after a single cooking session.
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6.3.5 Qualitative Feedback

Overall, 10/12 participants considered AMMA to be more supportive
of their preferences and capabilities. In the qualitative feedback on
different guidance modalities, many participants reported that they
liked a specific modality a lot, including the highlighting on the
HUD (P1, P2, P4, P6, P10, P13), the text instructions on the HUD
(P13), the audio guidance (P1, P6, P7, P12), and the video instruction
on the monitor (P4). However, some people also said they did not
like a specific modality, such as the instructions on the HUD (P2,
P4, P11) or the video on the monitor (P2, P10, P13). The most
common complaints were that the instructions on the HUD were too
close to their eyes; and the video on the monitor is not useful as the
experimenters had already explained how to do the task. Participants
also reported task-related modality preferences (e.g., P4 thought the
highlighting in the HUD was useful for picking up ingredients, and
P6/P12 thought the text instructions on the HUD were helpful for
baking and frying.) This shows a person-to-person and task-to-task
variation in modality preference, which confirms our hypothesis in
designing the guidance planner to adapt to the user’s preference.

As for comments on the two implementations of the system
(AMMA and the baseline), P7 pointed out that the highlighting
on the HUD is turned on automatically in the AMMA condition
for gathering ingredients, which is very useful. P10 pointed out
that the AMMA condition is “more stressful but a lot of fun” as
there are more parallel cooking steps, and the baseline guidance is
more boring. P6 and P13 wished the guidance display could simul-
taneously show multiple steps’ status. Other comments about the
system and the simulation environments include: P10 noted that in
a virtual environment, it is more fun to parallelize more steps for
speed. However, he may prefer to trade speed for fewer errors in the
real world. P6 wished she could close the oven door with her elbow,
which is impossible in the simulated kitchen.

7 DiscussiON

‘We discuss other applications and limitations of AMMA and oppor-
tunities for future work, as well as how our techniques for guidance
assistants might be used in general multimodal apps.



7.1 State Tracking and Guidance Planner Enhances

Guidance Assistants

Guidance assistants to date have had limited use cases. Perhaps
the most common use case is in mapping applications. The step-
by-step driving guidance provides one example of a state tracker in
today’s guidance assistants. AMMA further generalizes the concept
of a state tracker to other applications. Our evaluation showed that
our state tracker can recognize and help users recover from their
mistakes. In the future, more assistants can be built to utilize AMMA
and make other tasks as easy as following turn-by-turn navigations.

Even in today’s mapping applications, we have observed sub-
optimal behaviors, such as when the app keeps asking users to
make quick lane changes on crowded streets. We have shown that
AMMA’s user model can adapt to the user’s abilities and aid the user
in completing the cooking task faster. It would be useful if future
guidance assistants consider the user’s characteristics and give the
most optimal guidance for the current user. Furthermore, AMMA
suggests a better way of handling output modalities in guidance as-
sistants over the conventional methods of manual customization. By
providing an adaptive interface according to different users and tasks,
AMMA allows users to make fewer manual adjustments, helping
the user focus on the task rather than the system settings.

7.2 AMMA in Other Applications

Cooking was selected as a challenging case for guidance. The user
needs to handle solid and liquid objects, manage tasks in parallel,
perform varied actions, and deal with failure cases. These attributes
cover a wide range of physical tasks, e.g., furniture assembly in-
volves handling solid objects while not requiring parallelism. We
built our cooking assistant based on prior psychology research, sim-
ilar to the Keystroke-Level Model proposed by Stuart Card [8].
Domain experts can build similar models for other applications
by looking at the actions users need to perform and the relevant
psychological and physiological models of those actions.

AMMA can be used in more applications where adaptive guid-
ance is useful. Here we describe two other use cases.

7.2.1  Furniture Assembly

Furniture assembly is one example that can benefit from the archi-
tecture of AMMA. For the furniture assembly activity, we define:
Tasks “assemble a dining table”, “assemble a bed”, etc.

Steps “unwrapping component”, “slot together components”, etc.
Actions “screw in a screw”, “insert an component into a slot”, etc.
Uls a HUD showing animation/text instruction, audio guide, etc.
We can also provide a user model where the time is related to the
user’s hand dexterity, the object’s weight, and the user’s spatial
reasoning speed. One tricky part about furniture assembly [1] is
spatial conflicts between the components, so the system must check
for conflicts to determine the possible steps. With AMMA, the
assistant can learn which modality (text instructions, videos, or
figures) is the best for each user for each task.

7.2.2 Turn-by-Turn Navigation

Even though turn-by-turn navigations today already have the concept

of a state tracker, AMMA can provide a better guidance planning

algorithm. AMMA can organize multimodal Uls, including:

HUD AR overlay arrows indicating the next turn/showing a mini-
map to the destination with a list of upcoming turns/off

Audio giving a short or long audio guidance/off

Display show only the current turn/show the current turn and the
next few turns/show the full route

‘We can use feedback from the user, such as the stress level detected

in the user’s steering motion [35] or explicit modality switching, to

determine the best Ul for the user. We can also model the user’s

driving behavior (e.g., relative driving speed, tendency to make

mistakes for different instructions, etc.) to plan a personalized route.
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7.3 Limitations and Future Work

Currently, the AMMA-based cooking assistant in the cooking simu-
lator has a high accuracy of user action estimation. This emulates a
scenario where the actions are not sensed by pervasive [oT sensors
attached to cookware. In the real world, we think computer state
tracking and the six scenarios we set out to handle (Fig. 3) will still
apply in more realistic settings. To work with other common com-
puter vision-based inputs, future systems can allow users to cancel
the effect of an action to avoid major errors in state tracking.

As a proof of concept, the cooking assistant only supports cooking
actions in the Cooking Simulator game. The cooking assistant can
be further expanded with actions and steps to accommodate more
diverse cooking actions (e.g., mashing potatoes or steam cooking).
Another limitation of the simulated evaluation is that the actions and
time may differ from cooking in the real world. We believe that in
real life, as the cooking times are longer, the increased perceived
task load will decrease more, and the benefit of accurately estimating
the user’s cooking time and planning accordingly should persist.

A limitation we discovered during the user study is the trans-
parency of the user model. The game broke many times during P8’s
user study session, so the user model estimated a very low success
rate. Therefore, the system asked the user to grab more ingredients
than instructed in the recipe to ensure the user could successfully
cook the dish. In a real-world deployment, perception errors can
also lead to similar results. In that case, it would be useful to allow
users to help the user model recover from it.

7.4 From Adaptive Guidance Assistants to Mixed-
initiative Multimodal Apps

In our work, AMMA is solely focused on guidance assistants. In
other mixed-initiative applications [34], the idea of state tracking
and user modeling-based planning can also be beneficial when the
machine is taking more of the lead. For example, when an assistant
receives a user request missing some parameters, the assistant usually
needs to conduct slot filling, which means the assistant guides the
user to provide all the necessary information for the request.

Another interesting direction is to investigate using user models
and guidance planners for goals other than completion time. We may
want to reach the goal within a reasonable time but minimize our
carbon footprint or maximize the fun of doing a mundane task by
asking users to try different paths drawing on affective computing.
The architecture of the guidance planner (user model, simulator, and
policy algorithm) can be adjusted to better achieve a secondary goal.

Choosing the most appropriate feedback for the user and the sce-
nario is also crucial for the future of VR/AR [27]. VR/AR elevates
computer-to-human information transfer beyond 2D screens. Infor-
mation can appear anytime, anywhere, in any form, like the guidance
modalities in the cooking assistant. This opportunity brings possi-
bilities but also concerns. Implemented inappropriately, this can be
a disruption rather than a pleasant experience. Future applications
outside the guidance domain can consider using a similar approach
to decide the best feedback for a user in the scenario to achieve the
best experience between computer systems and human users.

8 CONCLUSION

AMMA shows a promising future where computer systems can learn
the user’s current status, preferences, and capabilities and give guid-
ance accordingly. Through our study, we demonstrated an assistant
built with AMMA could allow users to complete the task faster,
reduce the number of manual adjustments of the modality, and learn
users’ behavior through observations. By expanding the capabil-
ity of computers to understand human behaviors, future guidance
assistants will be able to help people better achieve their tasks.
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